File size: 6,338 Bytes
8c1bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn
from audioldm.clap.open_clip import create_model
from audioldm.clap.training.data import get_audio_features
import torchaudio
from transformers import RobertaTokenizer
import torch.nn.functional as F


class CLAPAudioEmbeddingClassifierFreev2(nn.Module):
    def __init__(
        self,
        pretrained_path="",
        key="class",
        sampling_rate=16000,
        embed_mode="audio",
        amodel = "HTSAT-tiny",
        unconditional_prob=0.1,
        random_mute=False,
        max_random_mute_portion=0.5,
        training_mode=True,
    ):
        super().__init__()

        self.key = key
        self.device = "cpu"
        self.precision = "fp32"
        self.amodel = amodel  # or 'PANN-14'
        self.tmodel = "roberta"  # the best text encoder in our training
        self.enable_fusion = False  # False if you do not want to use the fusion model
        self.fusion_type = "aff_2d"
        self.pretrained = pretrained_path
        self.embed_mode = embed_mode
        self.embed_mode_orig = embed_mode
        self.sampling_rate = sampling_rate
        self.unconditional_prob = unconditional_prob
        self.random_mute = random_mute
        self.tokenize = RobertaTokenizer.from_pretrained("roberta-base")
        self.max_random_mute_portion = max_random_mute_portion
        self.training_mode = training_mode
        self.model, self.model_cfg = create_model(
            self.amodel,
            self.tmodel,
            self.pretrained,
            precision=self.precision,
            device=self.device,
            enable_fusion=self.enable_fusion,
            fusion_type=self.fusion_type,
        )
        for p in self.model.parameters():
            p.requires_grad = False

        self.model.eval()

    def get_unconditional_condition(self, batchsize):
        self.unconditional_token = self.model.get_text_embedding(
            self.tokenizer(["", ""])
        )[0:1]
        return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0)

    def batch_to_list(self, batch):
        ret = []
        for i in range(batch.size(0)):
            ret.append(batch[i])
        return ret

    def make_decision(self, probability):
        if float(torch.rand(1)) < probability:
            return True
        else:
            return False

    def random_uniform(self, start, end):
        val = torch.rand(1).item()
        return start + (end - start) * val

    def _random_mute(self, waveform):
        # waveform: [bs, t-steps]
        t_steps = waveform.size(-1)
        for i in range(waveform.size(0)):
            mute_size = int(
                self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion))
            )
            mute_start = int(self.random_uniform(0, t_steps - mute_size))
            waveform[i, mute_start : mute_start + mute_size] = 0
        return waveform

    def cos_similarity(self, waveform, text):
        # waveform: [bs, t_steps]
        with torch.no_grad():
            self.embed_mode = "audio"
            audio_emb = self(waveform.cuda())
            self.embed_mode = "text"
            text_emb = self(text)
            similarity = F.cosine_similarity(audio_emb, text_emb, dim=2), audio_emb, text_emb
            return similarity.squeeze()

    def forward(self, batch, key=None):
        # If you want this conditioner to be unconditional, set self.unconditional_prob = 1.0
        # If you want this conditioner to be fully conditional, set self.unconditional_prob = 0.0
        if self.model.training == True and not self.training_mode:
            print(
                "The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters."
            )
            self.model, self.model_cfg = create_model(
                self.amodel,
                self.tmodel,
                self.pretrained,
                precision=self.precision,
                device="cuda",
                enable_fusion=self.enable_fusion,
                fusion_type=self.fusion_type,
            )
            for p in self.model.parameters():
                p.requires_grad = False
            self.model.eval()

        # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
        if self.embed_mode == "audio":
            with torch.no_grad():
                audio_dict_list = []
                assert (
                    self.sampling_rate == 16000
                ), "We only support 16000 sampling rate"
                if self.random_mute:
                    batch = self._random_mute(batch)
                # batch: [bs, 1, t-samples]
                batch = torchaudio.functional.resample(
                    batch, orig_freq=self.sampling_rate, new_freq=48000
                )
                for waveform in self.batch_to_list(batch):
                    audio_dict = {}
                    audio_dict = get_audio_features(
                        audio_dict,
                        waveform,
                        480000,
                        data_truncating="fusion",
                        data_filling="repeatpad",
                        audio_cfg=self.model_cfg["audio_cfg"],
                    )
                    audio_dict_list.append(audio_dict)
                # [bs, 512]
                embed = self.model.get_audio_embedding(audio_dict_list)
        elif self.embed_mode == "text":
            with torch.no_grad():
                # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
                text_data = self.tokenizer(batch)
                embed = self.model.get_text_embedding(text_data)

        embed = embed.unsqueeze(1)
        self.unconditional_token = self.model.get_text_embedding(
            self.tokenizer(["", ""])
        )[0:1]

        for i in range(embed.size(0)):
            if self.make_decision(self.unconditional_prob):
                embed[i] = self.unconditional_token

        # [bs, 1, 512]
        return embed.detach()

    def tokenizer(self, text):
        result = self.tokenize(
            text,
            padding="max_length",
            truncation=True,
            max_length=512,
            return_tensors="pt",
        )
        return {k: v.squeeze(0) for k, v in result.items()}