import math import torch from torch import nn from torch.nn import Parameter import torch.nn.functional as F import numpy as np class StyleAdaptiveLayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-5): super().__init__() self.in_dim = normalized_shape self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False) self.style = nn.Linear(self.in_dim, self.in_dim * 2) self.style.bias.data[: self.in_dim] = 1 self.style.bias.data[self.in_dim :] = 0 def forward(self, x, condition): # x: (B, T, d); condition: (B, T, d) style = self.style(torch.mean(condition, dim=1, keepdim=True)) gamma, beta = style.chunk(2, -1) out = self.norm(x) out = gamma * out + beta return out class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): super().__init__() self.dropout = dropout position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): x = x + self.pe[: x.size(0)] return F.dropout(x, self.dropout, training=self.training) class TransformerFFNLayer(nn.Module): def __init__( self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout ): super().__init__() self.encoder_hidden = encoder_hidden self.conv_filter_size = conv_filter_size self.conv_kernel_size = conv_kernel_size self.encoder_dropout = encoder_dropout self.ffn_1 = nn.Conv1d( self.encoder_hidden, self.conv_filter_size, self.conv_kernel_size, padding=self.conv_kernel_size // 2, ) self.ffn_1.weight.data.normal_(0.0, 0.02) self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden) self.ffn_2.weight.data.normal_(0.0, 0.02) def forward(self, x): # x: (B, T, d) x = self.ffn_1(x.permute(0, 2, 1)).permute( 0, 2, 1 ) # (B, T, d) -> (B, d, T) -> (B, T, d) x = F.relu(x) x = F.dropout(x, self.encoder_dropout, training=self.training) x = self.ffn_2(x) return x class TransformerEncoderLayer(nn.Module): def __init__( self, encoder_hidden, encoder_head, conv_filter_size, conv_kernel_size, encoder_dropout, use_cln, ): super().__init__() self.encoder_hidden = encoder_hidden self.encoder_head = encoder_head self.conv_filter_size = conv_filter_size self.conv_kernel_size = conv_kernel_size self.encoder_dropout = encoder_dropout self.use_cln = use_cln if not self.use_cln: self.ln_1 = nn.LayerNorm(self.encoder_hidden) self.ln_2 = nn.LayerNorm(self.encoder_hidden) else: self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden) self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden) self.self_attn = nn.MultiheadAttention( self.encoder_hidden, self.encoder_head, batch_first=True ) self.ffn = TransformerFFNLayer( self.encoder_hidden, self.conv_filter_size, self.conv_kernel_size, self.encoder_dropout, ) def forward(self, x, key_padding_mask, conditon=None): # x: (B, T, d); key_padding_mask: (B, T), mask is 0; condition: (B, T, d) # self attention residual = x if self.use_cln: x = self.ln_1(x, conditon) else: x = self.ln_1(x) if key_padding_mask != None: key_padding_mask_input = ~(key_padding_mask.bool()) else: key_padding_mask_input = None x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=key_padding_mask_input ) x = F.dropout(x, self.encoder_dropout, training=self.training) x = residual + x # ffn residual = x if self.use_cln: x = self.ln_2(x, conditon) else: x = self.ln_2(x) x = self.ffn(x) x = residual + x return x class TransformerEncoder(nn.Module): def __init__( self, enc_emb_tokens=None, encoder_layer=None, encoder_hidden=None, encoder_head=None, conv_filter_size=None, conv_kernel_size=None, encoder_dropout=None, use_cln=None, cfg=None, ): super().__init__() self.encoder_layer = ( encoder_layer if encoder_layer is not None else cfg.encoder_layer ) self.encoder_hidden = ( encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden ) self.encoder_head = ( encoder_head if encoder_head is not None else cfg.encoder_head ) self.conv_filter_size = ( conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size ) self.conv_kernel_size = ( conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size ) self.encoder_dropout = ( encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout ) self.use_cln = use_cln if use_cln is not None else cfg.use_cln if enc_emb_tokens != None: self.use_enc_emb = True self.enc_emb_tokens = enc_emb_tokens else: self.use_enc_emb = False self.position_emb = PositionalEncoding( self.encoder_hidden, self.encoder_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerEncoderLayer( self.encoder_hidden, self.encoder_head, self.conv_filter_size, self.conv_kernel_size, self.encoder_dropout, self.use_cln, ) for i in range(self.encoder_layer) ] ) if self.use_cln: self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden) else: self.last_ln = nn.LayerNorm(self.encoder_hidden) def forward(self, x, key_padding_mask, condition=None): if len(x.shape) == 2 and self.use_enc_emb: x = self.enc_emb_tokens(x) x = self.position_emb(x) else: x = self.position_emb(x) # (B, T, d) for layer in self.layers: x = layer(x, key_padding_mask, condition) if self.use_cln: x = self.last_ln(x, condition) else: x = self.last_ln(x) return x class DurationPredictor(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.input_size = cfg.input_size self.filter_size = cfg.filter_size self.kernel_size = cfg.kernel_size self.conv_layers = cfg.conv_layers self.cross_attn_per_layer = cfg.cross_attn_per_layer self.attn_head = cfg.attn_head self.drop_out = cfg.drop_out self.conv = nn.ModuleList() self.cattn = nn.ModuleList() for idx in range(self.conv_layers): in_dim = self.input_size if idx == 0 else self.filter_size self.conv += [ nn.Sequential( nn.Conv1d( in_dim, self.filter_size, self.kernel_size, padding=self.kernel_size // 2, ), nn.ReLU(), nn.LayerNorm(self.filter_size), nn.Dropout(self.drop_out), ) ] if idx % self.cross_attn_per_layer == 0: self.cattn.append( torch.nn.Sequential( nn.MultiheadAttention( self.filter_size, self.attn_head, batch_first=True, kdim=self.filter_size, vdim=self.filter_size, ), nn.LayerNorm(self.filter_size), nn.Dropout(0.2), ) ) self.linear = nn.Linear(self.filter_size, 1) self.linear.weight.data.normal_(0.0, 0.02) def forward(self, x, mask, ref_emb, ref_mask): """ input: x: (B, N, d) mask: (B, N), mask is 0 ref_emb: (B, d, T') ref_mask: (B, T'), mask is 0 output: dur_pred: (B, N) dur_pred_log: (B, N) dur_pred_round: (B, N) """ input_ref_mask = ~(ref_mask.bool()) # (B, T') # print(input_ref_mask) x = x.transpose(1, -1) # (B, N, d) -> (B, d, N) for idx, (conv, act, ln, dropout) in enumerate(self.conv): res = x # print(torch.min(x), torch.max(x)) if idx % self.cross_attn_per_layer == 0: attn_idx = idx // self.cross_attn_per_layer attn, attn_ln, attn_drop = self.cattn[attn_idx] attn_res = y_ = x.transpose(1, 2) # (B, d, N) -> (B, N, d) y_ = attn_ln(y_) # print(torch.min(y_), torch.min(y_)) # print(torch.min(ref_emb), torch.max(ref_emb)) y_, _ = attn( y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2), key_padding_mask=input_ref_mask, ) # y_, _ = attn(y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2)) # print(torch.min(y_), torch.min(y_)) y_ = attn_drop(y_) y_ = (y_ + attn_res) / math.sqrt(2.0) x = y_.transpose(1, 2) x = conv(x) # print(torch.min(x), torch.max(x)) x = act(x) x = ln(x.transpose(1, 2)) # print(torch.min(x), torch.max(x)) x = x.transpose(1, 2) x = dropout(x) if idx != 0: x += res if mask is not None: x = x * mask.to(x.dtype)[:, None, :] x = self.linear(x.transpose(1, 2)) x = torch.squeeze(x, -1) dur_pred = x.exp() - 1 dur_pred_round = torch.clamp(torch.round(x.exp() - 1), min=0).long() return { "dur_pred_log": x, "dur_pred": dur_pred, "dur_pred_round": dur_pred_round, } class PitchPredictor(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.input_size = cfg.input_size self.filter_size = cfg.filter_size self.kernel_size = cfg.kernel_size self.conv_layers = cfg.conv_layers self.cross_attn_per_layer = cfg.cross_attn_per_layer self.attn_head = cfg.attn_head self.drop_out = cfg.drop_out self.conv = nn.ModuleList() self.cattn = nn.ModuleList() for idx in range(self.conv_layers): in_dim = self.input_size if idx == 0 else self.filter_size self.conv += [ nn.Sequential( nn.Conv1d( in_dim, self.filter_size, self.kernel_size, padding=self.kernel_size // 2, ), nn.ReLU(), nn.LayerNorm(self.filter_size), nn.Dropout(self.drop_out), ) ] if idx % self.cross_attn_per_layer == 0: self.cattn.append( torch.nn.Sequential( nn.MultiheadAttention( self.filter_size, self.attn_head, batch_first=True, kdim=self.filter_size, vdim=self.filter_size, ), nn.LayerNorm(self.filter_size), nn.Dropout(0.2), ) ) self.linear = nn.Linear(self.filter_size, 1) self.linear.weight.data.normal_(0.0, 0.02) def forward(self, x, mask, ref_emb, ref_mask): """ input: x: (B, N, d) mask: (B, N), mask is 0 ref_emb: (B, d, T') ref_mask: (B, T'), mask is 0 output: pitch_pred: (B, T) """ input_ref_mask = ~(ref_mask.bool()) # (B, T') x = x.transpose(1, -1) # (B, N, d) -> (B, d, N) for idx, (conv, act, ln, dropout) in enumerate(self.conv): res = x if idx % self.cross_attn_per_layer == 0: attn_idx = idx // self.cross_attn_per_layer attn, attn_ln, attn_drop = self.cattn[attn_idx] attn_res = y_ = x.transpose(1, 2) # (B, d, N) -> (B, N, d) y_ = attn_ln(y_) y_, _ = attn( y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2), key_padding_mask=input_ref_mask, ) # y_, _ = attn(y_, ref_emb.transpose(1, 2), ref_emb.transpose(1, 2)) y_ = attn_drop(y_) y_ = (y_ + attn_res) / math.sqrt(2.0) x = y_.transpose(1, 2) x = conv(x) x = act(x) x = ln(x.transpose(1, 2)) x = x.transpose(1, 2) x = dropout(x) if idx != 0: x += res x = self.linear(x.transpose(1, 2)) x = torch.squeeze(x, -1) return x def pad(input_ele, mel_max_length=None): if mel_max_length: max_len = mel_max_length else: max_len = max([input_ele[i].size(0) for i in range(len(input_ele))]) out_list = list() for i, batch in enumerate(input_ele): if len(batch.shape) == 1: one_batch_padded = F.pad( batch, (0, max_len - batch.size(0)), "constant", 0.0 ) elif len(batch.shape) == 2: one_batch_padded = F.pad( batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0 ) out_list.append(one_batch_padded) out_padded = torch.stack(out_list) return out_padded class LengthRegulator(nn.Module): """Length Regulator""" def __init__(self): super(LengthRegulator, self).__init__() def LR(self, x, duration, max_len): device = x.device output = list() mel_len = list() for batch, expand_target in zip(x, duration): expanded = self.expand(batch, expand_target) output.append(expanded) mel_len.append(expanded.shape[0]) if max_len is not None: output = pad(output, max_len) else: output = pad(output) return output, torch.LongTensor(mel_len).to(device) def expand(self, batch, predicted): out = list() for i, vec in enumerate(batch): expand_size = predicted[i].item() out.append(vec.expand(max(int(expand_size), 0), -1)) out = torch.cat(out, 0) return out def forward(self, x, duration, max_len): output, mel_len = self.LR(x, duration, max_len) return output, mel_len