import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import math class FiLM(nn.Module): def __init__(self, in_dim, cond_dim): super().__init__() self.gain = Linear(cond_dim, in_dim) self.bias = Linear(cond_dim, in_dim) nn.init.xavier_uniform_(self.gain.weight) nn.init.constant_(self.gain.bias, 1) nn.init.xavier_uniform_(self.bias.weight) nn.init.constant_(self.bias.bias, 0) def forward(self, x, condition): gain = self.gain(condition) bias = self.bias(condition) if gain.dim() == 2: gain = gain.unsqueeze(-1) if bias.dim() == 2: bias = bias.unsqueeze(-1) return x * gain + bias class Mish(nn.Module): def forward(self, x): return x * torch.tanh(F.softplus(x)) def Conv1d(*args, **kwargs): layer = nn.Conv1d(*args, **kwargs) nn.init.kaiming_normal_(layer.weight) return layer def Linear(*args, **kwargs): layer = nn.Linear(*args, **kwargs) layer.weight.data.normal_(0.0, 0.02) return layer class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class ResidualBlock(nn.Module): def __init__(self, hidden_dim, attn_head, dilation, drop_out, has_cattn=False): super().__init__() self.hidden_dim = hidden_dim self.dilation = dilation self.has_cattn = has_cattn self.attn_head = attn_head self.drop_out = drop_out self.dilated_conv = Conv1d( hidden_dim, 2 * hidden_dim, 3, padding=dilation, dilation=dilation ) self.diffusion_proj = Linear(hidden_dim, hidden_dim) self.cond_proj = Conv1d(hidden_dim, hidden_dim * 2, 1) self.out_proj = Conv1d(hidden_dim, hidden_dim * 2, 1) if self.has_cattn: self.attn = nn.MultiheadAttention( hidden_dim, attn_head, 0.1, batch_first=True ) self.film = FiLM(hidden_dim * 2, hidden_dim) self.ln = nn.LayerNorm(hidden_dim) self.dropout = nn.Dropout(self.drop_out) def forward(self, x, x_mask, cond, diffusion_step, spk_query_emb): diffusion_step = self.diffusion_proj(diffusion_step).unsqueeze(-1) # (B, d, 1) cond = self.cond_proj(cond) # (B, 2*d, T) y = x + diffusion_step if x_mask != None: y = y * x_mask.to(y.dtype)[:, None, :] # (B, 2*d, T) if self.has_cattn: y_ = y.transpose(1, 2) y_ = self.ln(y_) y_, _ = self.attn(y_, spk_query_emb, spk_query_emb) # (B, T, d) y = self.dilated_conv(y) + cond # (B, 2*d, T) if self.has_cattn: y = self.film(y.transpose(1, 2), y_) # (B, T, 2*d) y = y.transpose(1, 2) # (B, 2*d, T) gate, filter_ = torch.chunk(y, 2, dim=1) y = torch.sigmoid(gate) * torch.tanh(filter_) y = self.out_proj(y) residual, skip = torch.chunk(y, 2, dim=1) if x_mask != None: residual = residual * x_mask.to(y.dtype)[:, None, :] skip = skip * x_mask.to(y.dtype)[:, None, :] return (x + residual) / math.sqrt(2.0), skip class WaveNet(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.in_dim = cfg.input_size self.hidden_dim = cfg.hidden_size self.out_dim = cfg.out_size self.num_layers = cfg.num_layers self.cross_attn_per_layer = cfg.cross_attn_per_layer self.dilation_cycle = cfg.dilation_cycle self.attn_head = cfg.attn_head self.drop_out = cfg.drop_out self.in_proj = Conv1d(self.in_dim, self.hidden_dim, 1) self.diffusion_embedding = SinusoidalPosEmb(self.hidden_dim) self.mlp = nn.Sequential( Linear(self.hidden_dim, self.hidden_dim * 4), Mish(), Linear(self.hidden_dim * 4, self.hidden_dim), ) self.cond_ln = nn.LayerNorm(self.hidden_dim) self.layers = nn.ModuleList( [ ResidualBlock( self.hidden_dim, self.attn_head, 2 ** (i % self.dilation_cycle), self.drop_out, has_cattn=(i % self.cross_attn_per_layer == 0), ) for i in range(self.num_layers) ] ) self.skip_proj = Conv1d(self.hidden_dim, self.hidden_dim, 1) self.out_proj = Conv1d(self.hidden_dim, self.out_dim, 1) nn.init.zeros_(self.out_proj.weight) def forward(self, x, x_mask, cond, diffusion_step, spk_query_emb): """ x: (B, 128, T) x_mask: (B, T), mask is 0 cond: (B, T, 512) diffusion_step: (B,) spk_query_emb: (B, 32, 512) """ cond = self.cond_ln(cond) cond_input = cond.transpose(1, 2) x_input = self.in_proj(x) x_input = F.relu(x_input) diffusion_step = self.diffusion_embedding(diffusion_step).to(x.dtype) diffusion_step = self.mlp(diffusion_step) skip = [] for _, layer in enumerate(self.layers): x_input, skip_connection = layer( x_input, x_mask, cond_input, diffusion_step, spk_query_emb ) skip.append(skip_connection) x_input = torch.sum(torch.stack(skip), dim=0) / math.sqrt(self.num_layers) x_out = self.skip_proj(x_input) x_out = F.relu(x_out) x_out = self.out_proj(x_out) # (B, 128, T) return x_out