import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from models.tts.naturalspeech2.wavenet import WaveNet class Diffusion(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.diff_estimator = WaveNet(cfg.wavenet) self.beta_min = cfg.beta_min self.beta_max = cfg.beta_max self.sigma = cfg.sigma self.noise_factor = cfg.noise_factor def forward(self, x, x_mask, cond, spk_query_emb, offset=1e-5): """ x: (B, 128, T) x_mask: (B, T), mask is 0 cond: (B, T, 512) spk_query_emb: (B, 32, 512) """ diffusion_step = torch.rand( x.shape[0], dtype=x.dtype, device=x.device, requires_grad=False ) diffusion_step = torch.clamp(diffusion_step, offset, 1.0 - offset) xt, z = self.forward_diffusion(x0=x, diffusion_step=diffusion_step) cum_beta = self.get_cum_beta(diffusion_step.unsqueeze(-1).unsqueeze(-1)) x0_pred = self.diff_estimator(xt, x_mask, cond, diffusion_step, spk_query_emb) mean_pred = x0_pred * torch.exp(-0.5 * cum_beta / (self.sigma**2)) variance = (self.sigma**2) * (1.0 - torch.exp(-cum_beta / (self.sigma**2))) noise_pred = (xt - mean_pred) / (torch.sqrt(variance) * self.noise_factor) noise = z diff_out = {"x0_pred": x0_pred, "noise_pred": noise_pred, "noise": noise} return diff_out @torch.no_grad() def get_cum_beta(self, time_step): return self.beta_min * time_step + 0.5 * (self.beta_max - self.beta_min) * ( time_step**2 ) @torch.no_grad() def get_beta_t(self, time_step): return self.beta_min + (self.beta_max - self.beta_min) * time_step @torch.no_grad() def forward_diffusion(self, x0, diffusion_step): """ x0: (B, 128, T) time_step: (B,) """ time_step = diffusion_step.unsqueeze(-1).unsqueeze(-1) cum_beta = self.get_cum_beta(time_step) mean = x0 * torch.exp(-0.5 * cum_beta / (self.sigma**2)) variance = (self.sigma**2) * (1 - torch.exp(-cum_beta / (self.sigma**2))) z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device, requires_grad=False) xt = mean + z * torch.sqrt(variance) * self.noise_factor return xt, z @torch.no_grad() def cal_dxt(self, xt, x_mask, cond, spk_query_emb, diffusion_step, h): time_step = diffusion_step.unsqueeze(-1).unsqueeze(-1) cum_beta = self.get_cum_beta(time_step=time_step) beta_t = self.get_beta_t(time_step=time_step) x0_pred = self.diff_estimator(xt, x_mask, cond, diffusion_step, spk_query_emb) mean_pred = x0_pred * torch.exp(-0.5 * cum_beta / (self.sigma**2)) noise_pred = xt - mean_pred variance = (self.sigma**2) * (1.0 - torch.exp(-cum_beta / (self.sigma**2))) logp = -noise_pred / (variance + 1e-8) dxt = -0.5 * h * beta_t * (logp + xt / (self.sigma**2)) return dxt @torch.no_grad() def reverse_diffusion(self, z, x_mask, cond, n_timesteps, spk_query_emb): h = 1.0 / max(n_timesteps, 1) xt = z for i in range(n_timesteps): t = (1.0 - (i + 0.5) * h) * torch.ones( z.shape[0], dtype=z.dtype, device=z.device ) dxt = self.cal_dxt(xt, x_mask, cond, spk_query_emb, diffusion_step=t, h=h) xt_ = xt - dxt if self.cfg.ode_solver == "midpoint": x_mid = 0.5 * (xt_ + xt) dxt = self.cal_dxt( x_mid, x_mask, cond, spk_query_emb, diffusion_step=t + 0.5 * h, h=h ) xt = xt - dxt elif self.cfg.ode_solver == "euler": xt = xt_ return xt @torch.no_grad() def reverse_diffusion_from_t( self, z, x_mask, cond, n_timesteps, spk_query_emb, t_start ): h = t_start / max(n_timesteps, 1) xt = z for i in range(n_timesteps): t = (t_start - (i + 0.5) * h) * torch.ones( z.shape[0], dtype=z.dtype, device=z.device ) dxt = self.cal_dxt(xt, x_mask, cond, spk_query_emb, diffusion_step=t, h=h) xt_ = xt - dxt if self.cfg.ode_solver == "midpoint": x_mid = 0.5 * (xt_ + xt) dxt = self.cal_dxt( x_mid, x_mask, cond, spk_query_emb, diffusion_step=t + 0.5 * h, h=h ) xt = xt - dxt elif self.cfg.ode_solver == "euler": xt = xt_ return xt