import streamlit as st from langchain.prompts import PromptTemplate from langchain_community.llms import CTransformers def get_llm_response(input_text, no_words, blog_style): llm=CTransformers(model="llama-2-7b-chat.ggmlv3.q8_0.bin", model_type="llama", config={"max_new_tokens": 256, "temperature": 0.5}) template=""" Write a blog for {blog_style} job profile for a topic {input_text} with max {no_words} words. """ prompt=PromptTemplate(input_variables=["blog_style", "input_text", "no_words"], template=template) response=llm(prompt.format(blog_style=blog_style, input_text=input_text, no_words=no_words)) print(response) return response st.set_page_config(page_title="Generate Blogs", page_icon="", layout="centered", initial_sidebar_state="collapsed") st.header("Generate Blogs") input_text=st.text_input("Enter the Topic") col1, col2 = st.columns([5,5]) with col1: no_words=st.text_input("No of Words") with col2: blog_style=st.selectbox("writing the blog for", ('Researchers', 'Data Scientist', 'Common People'), index=0) submit=st.button("Create") if submit: st.write(get_llm_response(input_text, no_words, blog_style))