import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from resnet import ResNet18 import gradio as gr model = ResNet18() model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def inference(input_img, transparency = 0.5, target_layer_number = -1): transform = transforms.ToTensor() org_img = input_img input_img = transform(input_img) input_img = input_img input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) target_layers = [model.layer2[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) return confidences, visualization title = "CIFAR10 trained on ResNet18 Model with GradCAM" description = "Gradio interface to infer on ResNet18 model, and get GradCAM results" examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]] demo = gr.Interface( # inference, # inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")], # outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)], # title = title, # description = description, # examples = examples, fn=None, # We'll add the function later after defining all functions inputs=[ gr.InterfaceChoice(["Yes", "No"], label="View GradCAM images?"), gr.InterfaceNumber(label="Number of GradCAM images to view", default=5, min=1, max=10), gr.InterfaceText(label="Layer name for GradCAM visualization", default="layer4", lines=1), gr.InterfaceSlider(label="Opacity", min=0.1, max=1.0, default=0.5, step=0.1), gr.InterfaceChoice(["Yes", "No"], label="View misclassified images?"), gr.InterfaceNumber(label="Number of misclassified images to view", default=5, min=1, max=10), gr.InterfaceChoice(["Upload New Images", "Example Images"], label="Select images source"), gr.InterfaceImage("file" if "Interface" in gr.__file__ else "image", label="Uploaded image" if "Interface" in gr.__file__ else "Image"), gr.InterfaceButton("Submit", label="View Images") ], outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)], live=True ) demo.launch()