import PIL.Image import gradio as gr import base64 import time import os import google.generativeai as genai # Set Google API key # os.environ['GOOGLE_API_KEY'] = 'YOUR_API_KEY' genai.configure(api_key=os.environ['GOOGLE_API_KEY']) # Create the Model txt_model = genai.GenerativeModel('gemini-pro') vis_model = genai.GenerativeModel('gemini-pro-vision') # Image to Base 64 Converter def image_to_base64(image_path): with open(image_path, 'rb') as img: encoded_string = base64.b64encode(img.read()) return encoded_string.decode('utf-8') # Function that takes user Inputs and displays it on ChatUI def query_message(history, txt, img): if not img: history += [(txt, None)] return history base64 = image_to_base64(img) data_url = f"data:image/jpeg;base64,{base64}" history += [(f"{txt} ![]({data_url})", None)] return history # Function that takes user Inputs, generates Response and displays it on ChatUI def llm_response(history, text, img): if not img: response = txt_model.generate_content(text) history += [(None, response.text)] else: img = PIL.Image.open(img) response = vis_model.generate_content([text, img]) history += [(None, response.text)] text = '' img = None return history, text, img # Interface Code with gr.Blocks(theme=gr.themes.Default()) as app: with gr.Row(): image_box = gr.Image(type="filepath") chatbot = gr.Chatbot( scale = 2, height = 550 ) text_box = gr.Textbox( placeholder = "Enter text and press enter, or upload an image", container = False, ) btn = gr.Button("Submit") clicked = btn.click(query_message, [chatbot, text_box, image_box], chatbot).then(llm_response, [chatbot, text_box, image_box], [chatbot, text_box, image_box]) app.queue() app.launch()