""" Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion """ from tensorflow import keras keras.mixed_precision.set_global_policy("mixed_float16") import time import gradio as gr import keras_cv from constants import css, examples, img_height, img_width, num_images_to_gen from share_btn import community_icon_html, loading_icon_html, share_js # Load model. weights_path = keras.utils.get_file( origin="https://huggingface.co/sayakpaul/kerascv_sd_pokemon_finetuned/resolve/main/ckpt_epochs_72_res_512_mp_True.h5", file_hash="10b20bd27912d1da904dafe8c576351c2f373546f446591aeff00d816d701a6e" ) pokemon_model = keras_cv.models.StableDiffusion( img_width=img_width, img_height=img_height ) pokemon_model.diffusion_model.load_weights(weights_path) pokemon_model.diffusion_model.compile(jit_compile=True) pokemon_model.decoder.compile(jit_compile=True) pokemon_model.text_encoder.compile(jit_compile=True) # Warm-up the model. #_ = pokemon_model.text_to_image("Teddy bear", batch_size=num_images_to_gen) def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: start_time = time.time() # `images is an `np.ndarray`. So we convert it to a list of ndarrays. # Each ndarray represents a generated image. # Reference: https://gradio.app/docs/#gallery pokemon_model.to("cpu") images = pokemon_model.text_to_image( prompt, batch_size=num_images_to_gen, unconditional_guidance_scale=unconditional_guidance_scale, ) end_time = time.time() print(f"Time taken: {end_time - start_time} seconds.") return [image for image in images] description = "This Space demonstrates a fine-tuned Stable Diffusion model. You can use it for generating custom pokemons. To get started, either enter a prompt and pick one from the examples below. For details on the fine-tuning procedure, refer to [this repository](https://github.com/sayakpaul/stable-diffusion-keras-ft/)." article = "This Space leverages a T4 GPU to run the predictions. We use mixed-precision to speed up the inference latency. We further use XLA to carve out maximum performance from TensorFlow." gr.Interface( generate_image_fn, inputs=[ gr.Textbox( label="Enter your prompt", max_lines=1, placeholder="cute Sundar Pichai creature", ), gr.Slider(value=40, minimum=8, maximum=50, step=1), ], outputs=gr.Gallery().style(grid=[2], height="auto"), title="Generate custom pokemons", description=description, article=article, examples=[["cute Sundar Pichai creature", 40], ["Hello kitty", 40]], allow_flagging=False, ).launch(enable_queue=True)