import random import numpy as np import cv2 import os import io import oss2 from PIL import Image import dashscope from dashscope import MultiModalConversation from http import HTTPStatus import re import requests from .log import logger import concurrent.futures # dashscope.api_key = os.getenv("API_KEY_QW") # oss # access_key_id = os.getenv("ACCESS_KEY_ID") # access_key_secret = os.getenv("ACCESS_KEY_SECRET") # bucket_name = os.getenv("BUCKET_NAME") # endpoint = os.getenv("ENDPOINT") # bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name) oss_path = "ashui" oss_path_img_gallery = "ashui_img_gallery" def download_img_pil(index, img_url): # print(img_url) r = requests.get(img_url, stream=True) if r.status_code == 200: img = Image.open(io.BytesIO(r.content)) return (index, img) else: logger.error(f"Fail to download: {img_url}") def download_images(img_urls, batch_size): imgs_pil = [None] * batch_size # worker_results = [] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: to_do = [] for i, url in enumerate(img_urls): future = executor.submit(download_img_pil, i, url) to_do.append(future) for future in concurrent.futures.as_completed(to_do): ret = future.result() # worker_results.append(ret) index, img_pil = ret imgs_pil[index] = img_pil # 按顺序排列url,后续下载关联的图片或者svg需要使用 return imgs_pil def upload_np_2_oss(input_image, name="cache.png", gallery=False): imgByteArr = io.BytesIO() Image.fromarray(input_image).save(imgByteArr, format="PNG") imgByteArr = imgByteArr.getvalue() if gallery: path = oss_path_img_gallery else: path = oss_path # bucket.put_object(path+"/"+name, imgByteArr) # data为数据,可以是图片 # ret = bucket.sign_url('GET', path+"/"+name, 60*60*24) # 返回值为链接,参数依次为,方法/oss上文件路径/过期时间(s) del imgByteArr return "" def call_with_messages(prompt): messages = [ {'role': 'user', 'content': prompt}] response = dashscope.Generation.call( 'qwen-14b-chat', messages=messages, result_format='message', # set the result is message format. ) if response.status_code == HTTPStatus.OK: return response['output']["choices"][0]["message"]['content'] else: print('Request id: %s, Status code: %s, error code: %s, error message: %s' % ( response.request_id, response.status_code, response.code, response.message )) return None def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z def make_noise_disk(H, W, C, F): noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C)) noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC) noise = noise[F: F + H, F: F + W] noise -= np.min(noise) noise /= np.max(noise) if C == 1: noise = noise[:, :, None] return noise def min_max_norm(x): x -= np.min(x) x /= np.maximum(np.max(x), 1e-5) return x def safe_step(x, step=2): y = x.astype(np.float32) * float(step + 1) y = y.astype(np.int32).astype(np.float32) / float(step) return y def img2mask(img, H, W, low=10, high=90): assert img.ndim == 3 or img.ndim == 2 assert img.dtype == np.uint8 if img.ndim == 3: y = img[:, :, random.randrange(0, img.shape[2])] else: y = img y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC) if random.uniform(0, 1) < 0.5: y = 255 - y return y < np.percentile(y, random.randrange(low, high))