(async function () { require('dotenv').config() const express = require('express') const tf = require("@tensorflow/tfjs-node") const sharp = require("sharp"); const jpeg = require("jpeg-js") const ffmpeg = require("fluent-ffmpeg") const { fileTypeFromBuffer } = (await import('file-type')); const stream = require("stream") const ffmpegPath = require('@ffmpeg-installer/ffmpeg').path; const ffprobePath = require('@ffprobe-installer/ffprobe').path; const nsfwjs = require("nsfwjs"); const fs = require("fs") ffmpeg.setFfprobePath(ffprobePath); ffmpeg.setFfmpegPath(ffmpegPath); // require("./model").loadModel() const app = express() const model = await nsfwjs.load("InceptionV3"); app.use(express.json()) app.all('/', async (req, res) => { try { const { img, auth } = req.query if (img) { if (process.env.AUTH) { if (!auth || process.env.AUTH != auth) return res.send("Invalid auth code") } const imageBuffer = await fetch(img).then(async c => await c.arrayBuffer()) // console.log((await fileTypeFromBuffer(imageBuffer)).mime) if ((await fileTypeFromBuffer(imageBuffer)).mime.includes("image")) { const convertedBuffer = await sharp(Buffer.from(imageBuffer)).jpeg().toBuffer(); // convert webp to jpeg const image = await convert(convertedBuffer) const predictions = await model.classify(image); image.dispose(); // Tensor memory must be managed explicitly (it is not sufficient to let a tf.Tensor go out of scope for its memory to be released). return res.send(predictions); } else { let inputStream1 = new stream.PassThrough(); inputStream1.end(Buffer.from(imageBuffer)); ffmpeg.ffprobe(inputStream1, function (err, metadata) { if (err) { console.error(err); return; } // Get a random second const randomSecond = Math.floor(Math.random() * metadata.format.duration); // Create a new input stream for the ffmpeg command let inputStream2 = new stream.PassThrough(); inputStream2.end(Buffer.from(imageBuffer)); // Create a PassThrough stream to collect the output const output = new stream.PassThrough(); // Set up the ffmpeg command ffmpeg({ source: inputStream2 }) .seekInput(randomSecond) .outputOptions('-vframes', '1') .outputOptions('-f', 'image2pipe') .outputOptions('-vcodec', 'png') .output(output) .on('error', console.error) .run(); // Collect the output into a buffer const chunks = []; output.on('data', chunk => chunks.push(chunk)); output.on('end', async () => { const buffer = Buffer.concat(chunks); fs.writeFileSync("aa.png", buffer) const convertedBuffer = await sharp(buffer).jpeg().toBuffer(); // convert webp to jpeg const cimage = await convert(convertedBuffer) const apredictions = await model.classify(cimage); cimage.dispose(); // Tensor memory must be managed explicitly (it is not sufficient to let a tf.Tensor go out of scope for its memory to be released). return res.send(apredictions); }); }); } }else{ return res.send('Hello World!') } } catch (err) { console.log(err) return res.status(500).json({ error: err.toString() }) } }) const port = process.env.PORT || process.env.SERVER_PORT || 7860 app.listen(port, () => { console.log(`Example app listening on port ${port}`) }) const convert = async (img) => { // Decoded image in UInt8 Byte array const image = await jpeg.decode(img, { useTArray: true }); const numChannels = 3; const numPixels = image.width * image.height; const values = new Int32Array(numPixels * numChannels); for (let i = 0; i < numPixels; i++) for (let c = 0; c < numChannels; ++c) values[i * numChannels + c] = image.data[i * 4 + c]; return tf.tensor3d(values, [image.height, image.width, numChannels], "int32"); }; })()