import numpy as np import torch from my3d import unproject def subpixel_rays_from_img(H, W, K, c2w_pose, normalize_dir=True, f=8): assert c2w_pose[3, 3] == 1. H, W = H * f, W * f n = H * W ys, xs = np.meshgrid(range(H), range(W), indexing="ij") xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2) top_left = np.array([-0.5, -0.5]) + 1 / (2 * f) xy_coords = top_left + xy_coords / f ro = c2w_pose[:, -1] pts = unproject(K, xy_coords, depth=1) pts = pts @ c2w_pose.T rd = pts - ro rd = rd[:, :3] if normalize_dir: rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True) ro = np.tile(ro[:3], (n, 1)) return ro, rd def rays_from_img(H, W, K, c2w_pose, normalize_dir=True): assert c2w_pose[3, 3] == 1. n = H * W ys, xs = np.meshgrid(range(H), range(W), indexing="ij") xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2) ro = c2w_pose[:, -1] pts = unproject(K, xy_coords, depth=1) pts = pts @ c2w_pose.T rd = pts - ro # equivalently can subtract [0,0,0,1] before pose transform rd = rd[:, :3] if normalize_dir: rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True) ro = np.tile(ro[:3], (n, 1)) return ro, rd def ray_box_intersect(ro, rd, aabb): """ Intersection of ray with axis-aligned bounding box This routine works for arbitrary dimensions; commonly d = 2 or 3 only works for numpy, not torch (which has slightly diff api for min, max, and clone) Args: ro: [n, d] ray origin rd: [n, d] ray direction (assumed to be already normalized; if not still fine, meaning of t as time of flight holds true) aabb: [d, 2] bbox bound on each dim Return: is_intersect: [n,] of bool, whether the particular ray intersects the bbox t_min: [n,] ray entrance time t_max: [n,] ray exit time """ n = ro.shape[0] d = aabb.shape[0] assert aabb.shape == (d, 2) assert ro.shape == (n, d) and rd.shape == (n, d) rd = rd.copy() rd[rd == 0] = 1e-6 # avoid div overflow; logically safe to give it big t ro = ro.reshape(n, d, 1) rd = rd.reshape(n, d, 1) ts = (aabb - ro) / rd # [n, d, 2] t_min = ts.min(-1).max(-1) # [n,] last of entrance t_max = ts.max(-1).min(-1) # [n,] first of exit is_intersect = t_min < t_max return is_intersect, t_min, t_max def as_torch_tsrs(device, *args): ret = [] for elem in args: target_dtype = torch.float32 if np.issubdtype(elem.dtype, np.floating) else None ret.append( torch.as_tensor(elem, dtype=target_dtype, device=device) ) return ret def group_mask_filter(mask, *items): return [elem[mask] for elem in items] def mask_back_fill(tsr, N, inds, base_value=1.0): shape = [N, *tsr.shape[1:]] canvas = base_value * np.ones_like(tsr, shape=shape) canvas[inds] = tsr return canvas def render_one_view(model, aabb, H, W, K, pose): N = H * W bs = max(W * 5, 4096) # render 5 rows; original batch size 4096, now 4000; ro, rd = rays_from_img(H, W, K, pose) ro, rd, t_min, t_max, intsct_inds = scene_box_filter(ro, rd, aabb) n = len(ro) # print(f"{n} vs {N}") # n can be smaller than N since some rays do not intsct aabb # n = n // 1 # actual number of rays to render; only needed for fast debugging dev = model.device ro, rd, t_min, t_max = as_torch_tsrs(dev, ro, rd, t_min, t_max) rgbs = torch.zeros(n, 3, device=dev) depth = torch.zeros(n, 1, device=dev) with torch.no_grad(): for i in range(int(np.ceil(n / bs))): s = i * bs e = min(n, s + bs) _rgbs, _depth, _ = render_ray_bundle( model, ro[s:e], rd[s:e], t_min[s:e], t_max[s:e] ) rgbs[s:e] = _rgbs depth[s:e] = _depth rgbs, depth = rgbs.cpu().numpy(), depth.cpu().numpy() base_color = 1.0 # empty region needs to be white rgbs = mask_back_fill(rgbs, N, intsct_inds, base_color).reshape(H, W, 3) depth = mask_back_fill(depth, N, intsct_inds, base_color).reshape(H, W) return rgbs, depth def scene_box_filter(ro, rd, aabb): N = len(ro) _, t_min, t_max = ray_box_intersect(ro, rd, aabb) # do not render what's behind the ray origin t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0) # can test intersect logic by reducing the focal length is_intsct = t_min < t_max ro, rd, t_min, t_max = group_mask_filter(is_intsct, ro, rd, t_min, t_max) intsct_inds = np.arange(N)[is_intsct] return ro, rd, t_min, t_max, intsct_inds def render_ray_bundle(model, ro, rd, t_min, t_max): """ The working shape is (k, n, 3) where k is num of samples per ray, n the ray batch size During integration the reduction is applied on k chain of filtering starting with ro, rd (from cameras), and a scene bbox - rays that do not intersect scene bbox; sample pts that fall outside the bbox - samples that do not fall within alpha mask - samples whose densities are very low; no need to compute colors on them """ num_samples, step_size = model.get_num_samples((t_max - t_min).max()) n, k = len(ro), num_samples ticks = step_size * torch.arange(k, device=ro.device) ticks = ticks.view(k, 1, 1) t_min = t_min.view(n, 1) # t_min = t_min + step_size * torch.rand_like(t_min) # NOTE seems useless t_max = t_max.view(n, 1) dists = t_min + ticks # [n, 1], [k, 1, 1] -> [k, n, 1] pts = ro + rd * dists # [n, 3], [n, 3], [k, n, 1] -> [k, n, 3] mask = (ticks < (t_max - t_min)).squeeze(-1) # [k, 1, 1], [n, 1] -> [k, n, 1] -> [k, n] smp_pts = pts[mask] if model.alphaMask is not None: alphas = model.alphaMask.sample_alpha(smp_pts) alpha_mask = alphas > 0 mask[mask.clone()] = alpha_mask smp_pts = pts[mask] σ = torch.zeros(k, n, device=ro.device) σ[mask] = model.compute_density_feats(smp_pts) weights = volume_rend_weights(σ, step_size) mask = weights > model.ray_march_weight_thres smp_pts = pts[mask] app_feats = model.compute_app_feats(smp_pts) # viewdirs = rd.view(1, n, 3).expand(k, n, 3)[mask] # ray dirs for each point # additional wild factors here as in nerf-w; wild factors are optimizable c_dim = app_feats.shape[-1] colors = torch.zeros(k, n, c_dim, device=ro.device) colors[mask] = model.feats2color(app_feats) weights = weights.view(k, n, 1) # can be used to compute other expected vals e.g. depth bg_weight = 1. - weights.sum(dim=0) # [n, 1] rgbs = (weights * colors).sum(dim=0) # [n, 3] if model.blend_bg_texture: uv = spherical_xyz_to_uv(rd) bg_feats = model.compute_bg(uv) bg_color = model.feats2color(bg_feats) rgbs = rgbs + bg_weight * bg_color else: rgbs = rgbs + bg_weight * 1. # blend white bg color # rgbs = rgbs.clamp(0, 1) # don't clamp since this is can be SD latent features E_dists = (weights * dists).sum(dim=0) bg_dist = 10. # blend bg distance; just don't make it too large E_dists = E_dists + bg_weight * bg_dist return rgbs, E_dists, weights.squeeze(-1) def spherical_xyz_to_uv(xyz): # xyz is Tensor of shape [N, 3], uv in [-1, 1] x, y, z = xyz.t() # [N] xy = (x ** 2 + y ** 2) ** 0.5 u = torch.atan2(xy, z) / torch.pi # [N] v = torch.atan2(y, x) / (torch.pi * 2) + 0.5 # [N] uv = torch.stack([u, v], -1) # [N, 2] uv = uv * 2 - 1 # [0, 1] -> [-1, 1] return uv def volume_rend_weights(σ, dist): α = 1 - torch.exp(-σ * dist) T = torch.ones_like(α) T[1:] = (1 - α).cumprod(dim=0)[:-1] assert (T >= 0).all() weights = α * T return weights