from dataclasses import dataclass, field import logging from flask import Flask, request, jsonify import transformers import torch from datasets import load_from_disk from multi_token.model_utils import MultiTaskType from multi_token.training import ModelArguments from multi_token.inference import load_trained_lora_model from multi_token.data_tools import encode_chat import evaluate import random import bert_score from tqdm import tqdm PRETRAIN_PHRASES_OLD = [ "Describe the audio in detail" ] PRETRAIN_PHRASES = [ "What is happening in the given music ?", "Describe the sound. ", "Describe the music. ", " Provide a description of the music.", " Provide a description of the sound.", "Can you interpret ?", "Please explain what's happening in ", "What does represent?", "Could you describe for me?", "What's the content of ?", "Can you depict ?", "What is ?", "In the music clip, , what is happening?", "Provide a description of the music. ", "Provide a description of the sound. ", "Provide a caption for the sound. ", "Provide a caption for the music. ", ] random.seed(1234) @dataclass class ServeArguments(ModelArguments): port: int = field(default=8080) host: str = field(default="0.0.0.0") load_bits: int = field(default=16) max_new_tokens: int = field(default=128) temperature: float = field(default=0.01) def generate(input_json): encoded_dict = encode_chat(input_json, tokenizer, model.modalities) with torch.inference_mode(): output_ids = model.generate( input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device), max_new_tokens=serve_args.max_new_tokens, use_cache=True, do_sample=True, temperature=serve_args.temperature, modality_inputs={ m.name: [encoded_dict[m.name]] for m in model.modalities }, ) outputs = tokenizer.decode( output_ids[0, encoded_dict["input_ids"].shape[0]:], skip_special_tokens=True, ).strip() return {"output": outputs} if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) parser = transformers.HfArgumentParser((ServeArguments,)) serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True) dataset_path = "/data/musicbench_multitoken_official_split/val" ds = load_from_disk(dataset_path) shuffled_ds = ds.shuffle(seed=1234) model, tokenizer = load_trained_lora_model( model_name_or_path=serve_args.model_name_or_path, model_lora_path=serve_args.model_lora_path, load_bits=serve_args.load_bits, use_multi_task=MultiTaskType(serve_args.use_multi_task), tasks_config=serve_args.tasks_config ) predictions = [] references = [] content_phrase = random.choice(PRETRAIN_PHRASES) # for data_point_id in range(len(ds)): for data_point_id in tqdm(range(10)): data_point = shuffled_ds[data_point_id] input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]} output_json = generate(input_json) print("Prediction ", output_json["output"]) print("Reference ", data_point["messages"][1]["content"]) print() print() predictions.append(output_json["output"]) references.append(data_point["messages"][1]["content"]) # Load evaluation metrics bleu = evaluate.load("bleu") meteor = evaluate.load("meteor") rouge = evaluate.load("rouge") # Compute BLEU scores bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4) print(bleu_results) #bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4 # Compute METEOR score meteor_results = meteor.compute(predictions=predictions, references=references) meteor_score = meteor_results["meteor"] # Compute ROUGE-L score rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"]) rouge_l_score = rouge_results["rougeL"].mid.fmeasure #print(rouge_results) # Compute BERT-Score P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True) bert_score_f1 = F1.mean().item() # Print results #print(f"BLEU Score: {bleu_score}") print(f"METEOR Score: {meteor_score}") #print(f"ROUGE-L Score: {rouge_l_score}") print(f"BERT-Score F1: {bert_score_f1}")