from dataclasses import dataclass, field import logging from flask import Flask, request, jsonify import transformers import torch from datasets import load_from_disk from multi_token.model_utils import MultiTaskType from multi_token.training import ( ModelArguments, ) from multi_token.inference import load_trained_lora_model from multi_token.data_tools import encode_chat import evaluate import random PRETRAIN_PHRASES = [ "What is happening in the given music ?", "Describe the sound. ", "Describe the music. ", " Provide a description of the music.", " Provide a description of the sound.", "Can you interpret ?", "Please explain what's happening in ", "What does represent?", "Could you describe for me?", "What's the content of ?", "Can you depict ?", "What is ?", "In the music clip, , what is happening?", "Provide a description of the music. ", "Provide a description of the sound. ", "Provide a caption for the sound. ", "Provide a caption for the music. ", ] @dataclass class ServeArguments(ModelArguments): port: int = field(default=8080) host: str = field(default="0.0.0.0") load_bits: int = field(default=16) max_new_tokens: int = field(default=128) temperature: float = field(default=0.01) def generate(input_json): encoded_dict = encode_chat(input_json, tokenizer, model.modalities) with torch.inference_mode(): output_ids = model.generate( input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device), max_new_tokens=serve_args.max_new_tokens, use_cache=True, do_sample=True, temperature=serve_args.temperature, modality_inputs={ m.name: [encoded_dict[m.name]] for m in model.modalities }, ) outputs = tokenizer.decode( output_ids[0, encoded_dict["input_ids"].shape[0] :], skip_special_tokens=True, ).strip() return {"output": outputs} if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) parser = transformers.HfArgumentParser((ServeArguments,)) serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True) dataset_path = "/data/musicbench_multitoken_official_split/val" ds = load_from_disk(dataset_path) model, tokenizer = load_trained_lora_model( model_name_or_path=serve_args.model_name_or_path, model_lora_path=serve_args.model_lora_path, load_bits=serve_args.load_bits, use_multi_task=MultiTaskType(serve_args.use_multi_task), tasks_config=serve_args.tasks_config ) predictions = [] references = [] content_phrase = random.choice(PRETRAIN_PHRASES) for data_point_id in range(100): data_point = ds[data_point_id] # print("datapoint", data_point) input_json={"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]} output_json = generate(input_json) print("Prediction ",output_json["output"]) print("Reference ", data_point["messages"][1]["content"]) print() print() predictions.append(output_json["output"]) references.append(data_point["messages"][1]["content"]) sacrebleu = evaluate.load("sacrebleu") sacrebleu_results=sacrebleu.compute(predictions=predictions, references=references) print(sacrebleu_results["score"])