alyasltd commited on
Commit
1a278ff
1 Parent(s): 5acd59d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -35,24 +35,24 @@ custom_css = """
35
  padding-right: 5rem;
36
  }
37
  h1 {
38
- color: #1DA1F2;
39
  }
40
  [data-testid="stDecoration"] {
41
  display: none;
42
  }
43
  h2 {
44
- color: #1DA1F2;
45
- border-bottom: 2px solid #1DA1F2;
46
  }
47
 
48
  h3 {
49
- color: #1DA1F2;
50
- border-bottom: 2px solid #1DA1F2;
51
  }
52
 
53
  /* Personnaliser le bouton */
54
  .stButton button {
55
- background-color: #1DA1F2 !important;
56
  color: white !important;
57
  border-radius: 5px !important;
58
  border: none !important;
@@ -136,6 +136,8 @@ plot_label_distribution()
136
 
137
  # Section Méthodologie
138
  st.header('Opinion Classification')
 
 
139
  st.write("""
140
  Firstly, we developed and utilized a labeling script specifically designed to classify tweets into three categories: FOR, AGAINST, and NEUTRAL. In total, 500 tweets were labeled, providing a solid foundation for testing and training our opinion classification models. We adopted an 80/20 data split for training and testing, respectively, to maximize learning while effectively validating the model's performance. This relatively small dataset was chosen due to time constraints that did not allow for more extensive labeling.""")
141
  st.subheader('Bert Fine-Tuning')
@@ -157,6 +159,8 @@ st.table(df_training)
157
 
158
  # Section Présentation des Résultats
159
  st.header('Results')
 
 
160
  # Accuracy du modèle par classe et globale
161
  data_accuracy = {
162
  "Accuracies": ["Global Accuracy", "Class 0 FOR Accuracy", "Class 1 AGAINST Accuracy", "Class 2 NEUTRAL Accuracy"],
@@ -167,6 +171,8 @@ st.table(df_accuracy)
167
 
168
  # Perspectives d'améliorations
169
  st.subheader('Perspectives of Improvement')
 
 
170
  st.write("""
171
  The performance of our model was significantly impacted by class imbalance in the dataset, with the "against" class being underrepresented. To address this issue, we are considering two main improvement strategies:
172
  """)
 
35
  padding-right: 5rem;
36
  }
37
  h1 {
38
+ color: #004c75;
39
  }
40
  [data-testid="stDecoration"] {
41
  display: none;
42
  }
43
  h2 {
44
+ color: #004c75;
45
+ border-bottom: 2px solid #004c75;
46
  }
47
 
48
  h3 {
49
+ color: #004c75;
50
+ border-bottom: 2px solid #004c75;
51
  }
52
 
53
  /* Personnaliser le bouton */
54
  .stButton button {
55
+ background-color: #004c75 !important;
56
  color: white !important;
57
  border-radius: 5px !important;
58
  border: none !important;
 
136
 
137
  # Section Méthodologie
138
  st.header('Opinion Classification')
139
+ st.text("") # Ajouter une ligne vide
140
+
141
  st.write("""
142
  Firstly, we developed and utilized a labeling script specifically designed to classify tweets into three categories: FOR, AGAINST, and NEUTRAL. In total, 500 tweets were labeled, providing a solid foundation for testing and training our opinion classification models. We adopted an 80/20 data split for training and testing, respectively, to maximize learning while effectively validating the model's performance. This relatively small dataset was chosen due to time constraints that did not allow for more extensive labeling.""")
143
  st.subheader('Bert Fine-Tuning')
 
159
 
160
  # Section Présentation des Résultats
161
  st.header('Results')
162
+ st.text("") # Ajouter une ligne vide
163
+
164
  # Accuracy du modèle par classe et globale
165
  data_accuracy = {
166
  "Accuracies": ["Global Accuracy", "Class 0 FOR Accuracy", "Class 1 AGAINST Accuracy", "Class 2 NEUTRAL Accuracy"],
 
171
 
172
  # Perspectives d'améliorations
173
  st.subheader('Perspectives of Improvement')
174
+ st.text("") # Ajouter une ligne vide
175
+
176
  st.write("""
177
  The performance of our model was significantly impacted by class imbalance in the dataset, with the "against" class being underrepresented. To address this issue, we are considering two main improvement strategies:
178
  """)