from data_provider.data_factory import data_provider from exp.exp_basic import Exp_Basic from utils.tools import EarlyStopping, adjust_learning_rate, visual from utils.metrics import metric import torch import torch.nn as nn from torch import optim import os import time import warnings import numpy as np import joblib warnings.filterwarnings('ignore') class Exp_Long_Term_Forecast(Exp_Basic): def __init__(self, args): super(Exp_Long_Term_Forecast, self).__init__(args) def _build_model(self): model = self.model_dict[self.args.model].Model(self.args).float() if self.args.use_multi_gpu and self.args.use_gpu: model = nn.DataParallel(model, device_ids=self.args.device_ids) return model def _get_data(self, flag): data_set, data_loader = data_provider(self.args, flag) return data_set, data_loader def _select_optimizer(self): model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) return model_optim def _select_criterion(self): criterion = nn.MSELoss() return criterion def vali(self, vali_data, vali_loader, criterion): total_loss = [] self.model.eval() with torch.no_grad(): for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float() batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.output_attention: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) else: if self.args.output_attention: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if outputs.dim() == 2: outputs = outputs.unsqueeze(-1) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) pred = outputs.detach().cpu() true = batch_y.detach().cpu() loss = criterion(pred, true) total_loss.append(loss) total_loss = np.average(total_loss) self.model.train() return total_loss def train(self, setting): train_data, train_loader = self._get_data(flag='train') vali_data, vali_loader = self._get_data(flag='val') test_data, test_loader = self._get_data(flag='test') path = os.path.join(self.args.checkpoints, setting) if not os.path.exists(path): os.makedirs(path) time_now = time.time() train_steps = len(train_loader) early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) model_optim = self._select_optimizer() criterion = self._select_criterion() if self.args.use_amp: scaler = torch.cuda.amp.GradScaler() for epoch in range(self.args.train_epochs): iter_count = 0 train_loss = [] self.model.train() epoch_time = time.time() for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader): iter_count += 1 model_optim.zero_grad() batch_x = batch_x.float().to(self.device) batch_y = batch_y.float().to(self.device) batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.output_attention: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if outputs.dim() == 2: outputs = outputs.unsqueeze(-1) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) loss = criterion(outputs, batch_y) train_loss.append(loss.item()) else: if self.args.output_attention: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if outputs.dim() == 2: outputs = outputs.unsqueeze(-1) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) loss = criterion(outputs, batch_y) train_loss.append(loss.item()) if (i + 1) % 100 == 0: print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) speed = (time.time() - time_now) / iter_count left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i) print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) iter_count = 0 time_now = time.time() if self.args.use_amp: scaler.scale(loss).backward() scaler.step(model_optim) scaler.update() else: loss.backward() model_optim.step() print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time)) train_loss = np.average(train_loss) vali_loss = self.vali(vali_data, vali_loader, criterion) test_loss = self.vali(test_data, test_loader, criterion) print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format( epoch + 1, train_steps, train_loss, vali_loss, test_loss)) early_stopping(vali_loss, self.model, path) if early_stopping.early_stop: print("Early stopping") break adjust_learning_rate(model_optim, epoch + 1, self.args) best_model_path = path + '/' + 'checkpoint.pth' self.model.load_state_dict(torch.load(best_model_path)) # --- ★★★ 핵심 수정 사항 2 ★★★ --- # 학습 데이터의 스케일러를 파일로 저장 scaler_path = os.path.join(path, 'scaler.gz') joblib.dump(train_data.scaler, scaler_path) print(f"Scaler saved to {scaler_path}") # ---------------------------------- return self.model # exp_long_term_forecasting.py의 test 함수 def test(self, setting, test=0): test_data, test_loader = self._get_data(flag='test') if test: print('loading model') self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth'))) preds = [] trues = [] attentions = [] # 1. 시각화(PDF) 저장을 위한 폴더 경로 설정 pdf_folder_path = './test_results/' + setting + '/' if not os.path.exists(pdf_folder_path): os.makedirs(pdf_folder_path) self.model.eval() with torch.no_grad(): for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float().to(self.device) batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) if self.args.output_attention: outputs, *attention = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if outputs.dim() == 2: outputs = outputs.unsqueeze(-1) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, :] batch_y = batch_y[:, -self.args.pred_len:, :].to(self.device) outputs = outputs.detach().cpu().numpy() batch_y = batch_y.detach().cpu().numpy() if self.args.output_attention: attentions.append(attention[0][0].detach().cpu().numpy()) if test_data.scale and self.args.inverse: unscaled_outputs_list = [] unscaled_batch_y_list = [] for j in range(outputs.shape[0]): output_sample = outputs[j] true_sample = batch_y[j] if self.args.features == 'MS': num_features = test_data.scaler.n_features_in_ output_sample = np.tile(output_sample, (1, num_features)) unscaled_output = test_data.inverse_transform(output_sample) unscaled_outputs_list.append(unscaled_output) unscaled_true = test_data.inverse_transform(true_sample) unscaled_batch_y_list.append(unscaled_true) outputs = np.stack(unscaled_outputs_list, axis=0) batch_y = np.stack(unscaled_batch_y_list, axis=0) outputs = outputs[:, :, f_dim:] batch_y = batch_y[:, :, f_dim:] pred = outputs true = batch_y preds.append(pred) trues.append(true) if i % 20 == 0: input = batch_x.detach().cpu().numpy() if test_data.scale and self.args.inverse: shape = input.shape input = test_data.inverse_transform(input.reshape(-1, input.shape[-1])).reshape(shape) gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0) pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0) # PDF 저장 경로를 'pdf_folder_path'로 지정 visual(gt, pd, os.path.join(pdf_folder_path, str(i) + '.pdf')) preds = np.concatenate(preds, axis=0) trues = np.concatenate(trues, axis=0) print('test shape:', preds.shape, trues.shape) # 2. 최종 결과(NPY, TXT) 저장을 위한 폴더 경로 설정 results_folder_path = './results/' + setting + '/' if not os.path.exists(results_folder_path): os.makedirs(results_folder_path) if self.args.output_attention: attentions = np.concatenate(attentions, axis=0) print('attention shape:', attentions.shape) np.save(os.path.join(results_folder_path, 'attention.npy'), attentions) mae, mse, rmse, mape, mspe = metric(preds, trues) print('mse:{}, mae:{}'.format(mse, mae)) # 결과 저장 경로를 'results_folder_path'로 지정 with open(os.path.join(results_folder_path, "result_metrics.txt"), 'a') as f: f.write(setting + " \n") f.write('mse:{}, mae:{}'.format(mse, mae)) f.write('\n') f.write('\n') # 2. 공통 summary 파일에도 추가 저장 summary_path = './results/summary_result_metrics.txt' with open(summary_path, 'a') as f: f.write(setting + " \n") f.write('mse:{}, mae:{}'.format(mse, mae)) f.write('\n\n') np.save(os.path.join(results_folder_path, 'metrics.npy'), np.array([mae, mse, rmse, mape, mspe])) np.save(os.path.join(results_folder_path, 'pred.npy'), preds) np.save(os.path.join(results_folder_path, 'true.npy'), trues) return