import gradio as gr import wave import matplotlib.pyplot as plt import numpy as np from extract_features import * import pickle import soundfile import librosa classifier = pickle.load(open('finalized_rf.sav', 'rb')) def emotion_predict(input): input_features = extract_feature(input, mfcc=True, chroma=True, mel=True, contrast=True, tonnetz=True) rf_prediction = classifier.predict(input_features.reshape(1,-1)) if rf_prediction == 'happy': return 'Happy 😎' elif rf_prediction == 'neutral': return 'Neutral 😐' elif rf_prediction == 'sad': return 'Sad 😢' else: return 'Angry 😤' def plot_fig(input): wav = wave.open(input, 'r') raw = wav.readframes(-1) raw = np.frombuffer(raw, "int16") sampleRate = wav.getframerate() Time = np.linspace(0, len(raw)/sampleRate, num=len(raw)) fig = plt.figure() plt.rcParams["figure.figsize"] = (50,15) plt.title("Waveform Of the Audio", fontsize=25) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.ylabel("Amplitude", fontsize=25) plt.plot(Time, raw, color='red') return fig with gr.Blocks() as app: gr.Markdown( """ # Speech Emotion Detector 🎵😍 This application classifies inputted audio 🔊 according to the verbal emotion into four categories: 1. Happy 😎 2. Neutral 😐 3. Sad 😢 4. Angry 😤 """ ) with gr.Tab("Record Audio"): record_input = gr.Audio(source="microphone", type="filepath") with gr.Accordion("Audio Visualization", open=False): gr.Markdown( """ ### Visualization will work only after Audio has been submitted """ ) plot_record = gr.Button("Display Audio Signal") plot_record_c = gr.Plot(label='Waveform Of the Audio') record_button = gr.Button("Detect Emotion") record_output = gr.Text(label = 'Emotion Detected') with gr.Tab("Upload Audio File"): gr.Markdown( """ ## Uploaded Audio should be of .wav format """ ) upload_input = gr.Audio(type="filepath") with gr.Accordion("Audio Visualization", open=False): gr.Markdown( """ ### Visualization will work only after Audio has been submitted """ ) plot_upload = gr.Button("Display Audio Signal") plot_upload_c = gr.Plot(label='Waveform Of the Audio') upload_button = gr.Button("Detect Emotion") upload_output = gr.Text(label = 'Emotion Detected') record_button.click(emotion_predict, inputs=record_input, outputs=record_output) upload_button.click(emotion_predict, inputs=upload_input, outputs=upload_output) plot_record.click(plot_fig, inputs=record_input, outputs=plot_record_c) plot_upload.click(plot_fig, inputs=upload_input, outputs=plot_upload_c) app.launch()