import gradio as gr import pandas as pd import joblib from huggingface_hub import hf_hub_download # Download model and feature names from Hugging Face model_path = hf_hub_download(repo_id="alperugurcan/mercedes", filename="mercedes_model.joblib") feature_names_path = hf_hub_download(repo_id="alperugurcan/mercedes", filename="feature_names.joblib") # Load the saved model and feature names model = joblib.load(model_path) feature_names = joblib.load(feature_names_path) def predict(*features): # Create a DataFrame with the input features df = pd.DataFrame([features], columns=feature_names) # Make prediction prediction = model.predict(df)[0] return f"Predicted time: {prediction:.2f}" # Create the interface inputs = [gr.Number(label=f"Feature {i+1}") for i in range(len(feature_names))] output = gr.Textbox(label="Prediction") interface = gr.Interface( fn=predict, inputs=inputs, outputs=output, title="Mercedes-Benz Manufacturing Time Prediction", description="Enter feature values to predict manufacturing time" ) interface.launch()