""" Vision Transformer (ViT) in PyTorch Hacked together by / Copyright 2020 Ross Wightman """ import torch import torch.nn as nn from baselines.ViT.helpers import load_pretrained from baselines.ViT.layer_helpers import to_2tuple from baselines.ViT.weight_init import trunc_normal_ from einops import rearrange from modules.layers_ours import * def _cfg(url="", **kwargs): return { "url": url, "num_classes": 1000, "input_size": (3, 224, 224), "pool_size": None, "crop_pct": 0.9, "interpolation": "bicubic", "first_conv": "patch_embed.proj", "classifier": "head", **kwargs, } default_cfgs = { # patch models "vit_small_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth", ), "vit_base_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_large_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), } def compute_rollout_attention(all_layer_matrices, start_layer=0): # adding residual consideration num_tokens = all_layer_matrices[0].shape[1] batch_size = all_layer_matrices[0].shape[0] eye = ( torch.eye(num_tokens) .expand(batch_size, num_tokens, num_tokens) .to(all_layer_matrices[0].device) ) all_layer_matrices = [ all_layer_matrices[i] + eye for i in range(len(all_layer_matrices)) ] # all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) # for i in range(len(all_layer_matrices))] joint_attention = all_layer_matrices[start_layer] for i in range(start_layer + 1, len(all_layer_matrices)): joint_attention = all_layer_matrices[i].bmm(joint_attention) return joint_attention class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = Linear(in_features, hidden_features) self.act = GELU() self.fc2 = Linear(hidden_features, out_features) self.drop = Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def relprop(self, cam, **kwargs): cam = self.drop.relprop(cam, **kwargs) cam = self.fc2.relprop(cam, **kwargs) cam = self.act.relprop(cam, **kwargs) cam = self.fc1.relprop(cam, **kwargs) return cam class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = head_dim**-0.5 # A = Q*K^T self.matmul1 = einsum("bhid,bhjd->bhij") # attn = A*V self.matmul2 = einsum("bhij,bhjd->bhid") self.qkv = Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = Dropout(attn_drop) self.proj = Linear(dim, dim) self.proj_drop = Dropout(proj_drop) self.softmax = Softmax(dim=-1) self.attn_cam = None self.attn = None self.v = None self.v_cam = None self.attn_gradients = None def get_attn(self): return self.attn def save_attn(self, attn): self.attn = attn def save_attn_cam(self, cam): self.attn_cam = cam def get_attn_cam(self): return self.attn_cam def get_v(self): return self.v def save_v(self, v): self.v = v def save_v_cam(self, cam): self.v_cam = cam def get_v_cam(self): return self.v_cam def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def forward(self, x): b, n, _, h = *x.shape, self.num_heads qkv = self.qkv(x) q, k, v = rearrange(qkv, "b n (qkv h d) -> qkv b h n d", qkv=3, h=h) self.save_v(v) dots = self.matmul1([q, k]) * self.scale attn = self.softmax(dots) attn = self.attn_drop(attn) self.save_attn(attn) attn.register_hook(self.save_attn_gradients) out = self.matmul2([attn, v]) out = rearrange(out, "b h n d -> b n (h d)") out = self.proj(out) out = self.proj_drop(out) return out def relprop(self, cam, **kwargs): cam = self.proj_drop.relprop(cam, **kwargs) cam = self.proj.relprop(cam, **kwargs) cam = rearrange(cam, "b n (h d) -> b h n d", h=self.num_heads) # attn = A*V (cam1, cam_v) = self.matmul2.relprop(cam, **kwargs) cam1 /= 2 cam_v /= 2 self.save_v_cam(cam_v) self.save_attn_cam(cam1) cam1 = self.attn_drop.relprop(cam1, **kwargs) cam1 = self.softmax.relprop(cam1, **kwargs) # A = Q*K^T (cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs) cam_q /= 2 cam_k /= 2 cam_qkv = rearrange( [cam_q, cam_k, cam_v], "qkv b h n d -> b n (qkv h d)", qkv=3, h=self.num_heads, ) return self.qkv.relprop(cam_qkv, **kwargs) class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0 ): super().__init__() self.norm1 = LayerNorm(dim, eps=1e-6) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, ) self.norm2 = LayerNorm(dim, eps=1e-6) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) self.add1 = Add() self.add2 = Add() self.clone1 = Clone() self.clone2 = Clone() def forward(self, x): x1, x2 = self.clone1(x, 2) x = self.add1([x1, self.attn(self.norm1(x2))]) x1, x2 = self.clone2(x, 2) x = self.add2([x1, self.mlp(self.norm2(x2))]) return x def relprop(self, cam, **kwargs): (cam1, cam2) = self.add2.relprop(cam, **kwargs) cam2 = self.mlp.relprop(cam2, **kwargs) cam2 = self.norm2.relprop(cam2, **kwargs) cam = self.clone2.relprop((cam1, cam2), **kwargs) (cam1, cam2) = self.add1.relprop(cam, **kwargs) cam2 = self.attn.relprop(cam2, **kwargs) cam2 = self.norm1.relprop(cam2, **kwargs) cam = self.clone1.relprop((cam1, cam2), **kwargs) return cam class PatchEmbed(nn.Module): """Image to Patch Embedding""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x def relprop(self, cam, **kwargs): cam = cam.transpose(1, 2) cam = cam.reshape( cam.shape[0], cam.shape[1], (self.img_size[0] // self.patch_size[0]), (self.img_size[1] // self.patch_size[1]), ) return self.proj.relprop(cam, **kwargs) class VisionTransformer(nn.Module): """Vision Transformer with support for patch or hybrid CNN input stage""" def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=False, mlp_head=False, drop_rate=0.0, attn_drop_rate=0.0, ): super().__init__() self.num_classes = num_classes self.num_features = ( self.embed_dim ) = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, ) for i in range(depth) ] ) self.norm = LayerNorm(embed_dim) if mlp_head: # paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes) else: # with a single Linear layer as head, the param count within rounding of paper self.head = Linear(embed_dim, num_classes) # FIXME not quite sure what the proper weight init is supposed to be, # normal / trunc normal w/ std == .02 similar to other Bert like transformers trunc_normal_(self.pos_embed, std=0.02) # embeddings same as weights? trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) self.pool = IndexSelect() self.add = Add() self.inp_grad = None def save_inp_grad(self, grad): self.inp_grad = grad def get_inp_grad(self): return self.inp_grad def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @property def no_weight_decay(self): return {"pos_embed", "cls_token"} def forward(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = self.add([x, self.pos_embed]) x.register_hook(self.save_inp_grad) for blk in self.blocks: x = blk(x) x = self.norm(x) x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device)) x = x.squeeze(1) x = self.head(x) return x def relprop( self, cam=None, method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs, ): # print(kwargs) # print("conservation 1", cam.sum()) cam = self.head.relprop(cam, **kwargs) cam = cam.unsqueeze(1) cam = self.pool.relprop(cam, **kwargs) cam = self.norm.relprop(cam, **kwargs) for blk in reversed(self.blocks): cam = blk.relprop(cam, **kwargs) # print("conservation 2", cam.sum()) # print("min", cam.min()) if method == "full": (cam, _) = self.add.relprop(cam, **kwargs) cam = cam[:, 1:] cam = self.patch_embed.relprop(cam, **kwargs) # sum on channels cam = cam.sum(dim=1) return cam elif method == "rollout": # cam rollout attn_cams = [] for blk in self.blocks: attn_heads = blk.attn.get_attn_cam().clamp(min=0) avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() attn_cams.append(avg_heads) cam = compute_rollout_attention(attn_cams, start_layer=start_layer) cam = cam[:, 0, 1:] return cam # our method, method name grad is legacy elif method == "transformer_attribution" or method == "grad": cams = [] for blk in self.blocks: grad = blk.attn.get_attn_gradients() cam = blk.attn.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cams.append(cam.unsqueeze(0)) rollout = compute_rollout_attention(cams, start_layer=start_layer) cam = rollout[:, 0, 1:] return cam elif method == "last_layer": cam = self.blocks[-1].attn.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) if is_ablation: grad = self.blocks[-1].attn.get_attn_gradients() grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cam = cam[0, 1:] return cam elif method == "last_layer_attn": cam = self.blocks[-1].attn.get_attn() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) cam = cam.clamp(min=0).mean(dim=0) cam = cam[0, 1:] return cam elif method == "second_layer": cam = self.blocks[1].attn.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) if is_ablation: grad = self.blocks[1].attn.get_attn_gradients() grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cam = cam[0, 1:] return cam def _conv_filter(state_dict, patch_size=16): """convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if "patch_embed.proj.weight" in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict def vit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs, ) model.default_cfg = default_cfgs["vit_base_patch16_224"] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get("in_chans", 3), filter_fn=_conv_filter, ) return model def vit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs, ) model.default_cfg = default_cfgs["vit_large_patch16_224"] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get("in_chans", 3) ) return model def deit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs, ) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) return model