##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """Encoding Data Parallel""" import functools import threading import torch import torch.cuda.comm as comm from torch.autograd import Function, Variable from torch.nn.parallel._functions import Broadcast, ReduceAddCoalesced from torch.nn.parallel.data_parallel import DataParallel from torch.nn.parallel.parallel_apply import get_a_var torch_ver = torch.__version__[:3] __all__ = [ "allreduce", "DataParallelModel", "DataParallelCriterion", "patch_replication_callback", ] def allreduce(*inputs): """Cross GPU all reduce autograd operation for calculate mean and variance in SyncBN. """ return AllReduce.apply(*inputs) class AllReduce(Function): @staticmethod def forward(ctx, num_inputs, *inputs): ctx.num_inputs = num_inputs ctx.target_gpus = [ inputs[i].get_device() for i in range(0, len(inputs), num_inputs) ] inputs = [inputs[i : i + num_inputs] for i in range(0, len(inputs), num_inputs)] # sort before reduce sum inputs = sorted(inputs, key=lambda i: i[0].get_device()) results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) outputs = comm.broadcast_coalesced(results, ctx.target_gpus) return tuple([t for tensors in outputs for t in tensors]) @staticmethod def backward(ctx, *inputs): inputs = [i.data for i in inputs] inputs = [ inputs[i : i + ctx.num_inputs] for i in range(0, len(inputs), ctx.num_inputs) ] results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) outputs = comm.broadcast_coalesced(results, ctx.target_gpus) return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors]) class Reduce(Function): @staticmethod def forward(ctx, *inputs): ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))] inputs = sorted(inputs, key=lambda i: i.get_device()) return comm.reduce_add(inputs) @staticmethod def backward(ctx, gradOutput): return Broadcast.apply(ctx.target_gpus, gradOutput) class DataParallelModel(DataParallel): """Implements data parallelism at the module level. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. Note that the outputs are not gathered, please use compatible :class:`encoding.parallel.DataParallelCriterion`. The batch size should be larger than the number of GPUs used. It should also be an integer multiple of the number of GPUs so that each chunk is the same size (so that each GPU processes the same number of samples). Args: module: module to be parallelized device_ids: CUDA devices (default: all devices) Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. “Context Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) >>> y = net(x) """ def gather(self, outputs, output_device): return outputs def replicate(self, module, device_ids): modules = super(DataParallelModel, self).replicate(module, device_ids) execute_replication_callbacks(modules) return modules class DataParallelCriterion(DataParallel): """ Calculate loss in multiple-GPUs, which balance the memory usage for Semantic Segmentation. The targets are splitted across the specified devices by chunking in the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`. Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. “Context Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2]) >>> y = net(x) >>> loss = criterion(y, target) """ def forward(self, inputs, *targets, **kwargs): # input should be already scatterd # scattering the targets instead if not self.device_ids: return self.module(inputs, *targets, **kwargs) targets, kwargs = self.scatter(targets, kwargs, self.device_ids) if len(self.device_ids) == 1: return self.module(inputs, *targets[0], **kwargs[0]) replicas = self.replicate(self.module, self.device_ids[: len(inputs)]) outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs) return Reduce.apply(*outputs) / len(outputs) # return self.gather(outputs, self.output_device).mean() def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None): assert len(modules) == len(inputs) assert len(targets) == len(inputs) if kwargs_tup: assert len(modules) == len(kwargs_tup) else: kwargs_tup = ({},) * len(modules) if devices is not None: assert len(modules) == len(devices) else: devices = [None] * len(modules) lock = threading.Lock() results = {} if torch_ver != "0.3": grad_enabled = torch.is_grad_enabled() def _worker(i, module, input, target, kwargs, device=None): if torch_ver != "0.3": torch.set_grad_enabled(grad_enabled) if device is None: device = get_a_var(input).get_device() try: with torch.cuda.device(device): # this also avoids accidental slicing of `input` if it is a Tensor if not isinstance(input, (list, tuple)): input = (input,) if type(input) != type(target): if isinstance(target, tuple): input = tuple(input) elif isinstance(target, list): input = list(input) else: raise Exception("Types problem") output = module(*(input + target), **kwargs) with lock: results[i] = output except Exception as e: with lock: results[i] = e if len(modules) > 1: threads = [ threading.Thread( target=_worker, args=(i, module, input, target, kwargs, device), ) for i, (module, input, target, kwargs, device) in enumerate( zip(modules, inputs, targets, kwargs_tup, devices) ) ] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, Exception): raise output outputs.append(output) return outputs ########################################################################### # Adapted from Synchronized-BatchNorm-PyTorch. # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch # class CallbackContext(object): pass def execute_replication_callbacks(modules): """ Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` Note that, as all modules are isomorphism, we assign each sub-module with a context (shared among multiple copies of this module on different devices). Through this context, different copies can share some information. We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback of any slave copies. """ master_copy = modules[0] nr_modules = len(list(master_copy.modules())) ctxs = [CallbackContext() for _ in range(nr_modules)] for i, module in enumerate(modules): for j, m in enumerate(module.modules()): if hasattr(m, "__data_parallel_replicate__"): m.__data_parallel_replicate__(ctxs[j], i) def patch_replication_callback(data_parallel): """ Monkey-patch an existing `DataParallel` object. Add the replication callback. Useful when you have customized `DataParallel` implementation. Examples: > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) > patch_replication_callback(sync_bn) # this is equivalent to > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) """ assert isinstance(data_parallel, DataParallel) old_replicate = data_parallel.replicate @functools.wraps(old_replicate) def new_replicate(module, device_ids): modules = old_replicate(module, device_ids) execute_replication_callbacks(modules) return modules data_parallel.replicate = new_replicate