import json import os from dataclasses import asdict, dataclass, is_dataclass from itertools import chain from typing import Dict, FrozenSet, List, Set, Tuple, Union @dataclass(eq=True, frozen=True) class Evidence: """ (docid, start_token, end_token) form the only official Evidence; sentence level annotations are for convenience. Args: text: Some representation of the evidence text docid: Some identifier for the document start_token: The canonical start token, inclusive end_token: The canonical end token, exclusive start_sentence: Best guess start sentence, inclusive end_sentence: Best guess end sentence, exclusive """ text: Union[str, Tuple[int], Tuple[str]] docid: str start_token: int = -1 end_token: int = -1 start_sentence: int = -1 end_sentence: int = -1 @dataclass(eq=True, frozen=True) class Annotation: """ Args: annotation_id: unique ID for this annotation element query: some representation of a query string evidences: a set of "evidence groups". Each evidence group is: * sufficient to respond to the query (or justify an answer) * composed of one or more Evidences * may have multiple documents in it (depending on the dataset) - e-snli has multiple documents - other datasets do not classification: str query_type: Optional str, additional information about the query docids: a set of docids in which one may find evidence. """ annotation_id: str query: Union[str, Tuple[int]] evidences: Union[Set[Tuple[Evidence]], FrozenSet[Tuple[Evidence]]] classification: str query_type: str = None docids: Set[str] = None def all_evidences(self) -> Tuple[Evidence]: return tuple(list(chain.from_iterable(self.evidences))) def annotations_to_jsonl(annotations, output_file): with open(output_file, "w") as of: for ann in sorted(annotations, key=lambda x: x.annotation_id): as_json = _annotation_to_dict(ann) as_str = json.dumps(as_json, sort_keys=True) of.write(as_str) of.write("\n") def _annotation_to_dict(dc): # convenience method if is_dataclass(dc): d = asdict(dc) ret = dict() for k, v in d.items(): ret[k] = _annotation_to_dict(v) return ret elif isinstance(dc, dict): ret = dict() for k, v in dc.items(): k = _annotation_to_dict(k) v = _annotation_to_dict(v) ret[k] = v return ret elif isinstance(dc, str): return dc elif isinstance(dc, (set, frozenset, list, tuple)): ret = [] for x in dc: ret.append(_annotation_to_dict(x)) return tuple(ret) else: return dc def load_jsonl(fp: str) -> List[dict]: ret = [] with open(fp, "r") as inf: for line in inf: content = json.loads(line) ret.append(content) return ret def write_jsonl(jsonl, output_file): with open(output_file, "w") as of: for js in jsonl: as_str = json.dumps(js, sort_keys=True) of.write(as_str) of.write("\n") def annotations_from_jsonl(fp: str) -> List[Annotation]: ret = [] with open(fp, "r") as inf: for line in inf: content = json.loads(line) ev_groups = [] for ev_group in content["evidences"]: ev_group = tuple([Evidence(**ev) for ev in ev_group]) ev_groups.append(ev_group) content["evidences"] = frozenset(ev_groups) ret.append(Annotation(**content)) return ret def load_datasets( data_dir: str, ) -> Tuple[List[Annotation], List[Annotation], List[Annotation]]: """Loads a training, validation, and test dataset Each dataset is assumed to have been serialized by annotations_to_jsonl, that is it is a list of json-serialized Annotation instances. """ train_data = annotations_from_jsonl(os.path.join(data_dir, "train.jsonl")) val_data = annotations_from_jsonl(os.path.join(data_dir, "val.jsonl")) test_data = annotations_from_jsonl(os.path.join(data_dir, "test.jsonl")) return train_data, val_data, test_data def load_documents( data_dir: str, docids: Set[str] = None ) -> Dict[str, List[List[str]]]: """Loads a subset of available documents from disk. Each document is assumed to be serialized as newline ('\n') separated sentences. Each sentence is assumed to be space (' ') joined tokens. """ if os.path.exists(os.path.join(data_dir, "docs.jsonl")): assert not os.path.exists(os.path.join(data_dir, "docs")) return load_documents_from_file(data_dir, docids) docs_dir = os.path.join(data_dir, "docs") res = dict() if docids is None: docids = sorted(os.listdir(docs_dir)) else: docids = sorted(set(str(d) for d in docids)) for d in docids: with open(os.path.join(docs_dir, d), "r") as inf: res[d] = inf.read() return res def load_flattened_documents(data_dir: str, docids: Set[str]) -> Dict[str, List[str]]: """Loads a subset of available documents from disk. Returns a tokenized version of the document. """ unflattened_docs = load_documents(data_dir, docids) flattened_docs = dict() for doc, unflattened in unflattened_docs.items(): flattened_docs[doc] = list(chain.from_iterable(unflattened)) return flattened_docs def intern_documents( documents: Dict[str, List[List[str]]], word_interner: Dict[str, int], unk_token: str ): """ Replaces every word with its index in an embeddings file. If a word is not found, uses the unk_token instead """ ret = dict() unk = word_interner[unk_token] for docid, sentences in documents.items(): ret[docid] = [[word_interner.get(w, unk) for w in s] for s in sentences] return ret def intern_annotations( annotations: List[Annotation], word_interner: Dict[str, int], unk_token: str ): ret = [] for ann in annotations: ev_groups = [] for ev_group in ann.evidences: evs = [] for ev in ev_group: evs.append( Evidence( text=tuple( [ word_interner.get(t, word_interner[unk_token]) for t in ev.text.split() ] ), docid=ev.docid, start_token=ev.start_token, end_token=ev.end_token, start_sentence=ev.start_sentence, end_sentence=ev.end_sentence, ) ) ev_groups.append(tuple(evs)) ret.append( Annotation( annotation_id=ann.annotation_id, query=tuple( [ word_interner.get(t, word_interner[unk_token]) for t in ann.query.split() ] ), evidences=frozenset(ev_groups), classification=ann.classification, query_type=ann.query_type, ) ) return ret def load_documents_from_file( data_dir: str, docids: Set[str] = None ) -> Dict[str, List[List[str]]]: """Loads a subset of available documents from 'docs.jsonl' file on disk. Each document is assumed to be serialized as newline ('\n') separated sentences. Each sentence is assumed to be space (' ') joined tokens. """ docs_file = os.path.join(data_dir, "docs.jsonl") documents = load_jsonl(docs_file) documents = {doc["docid"]: doc["document"] for doc in documents} # res = dict() # if docids is None: # docids = sorted(list(documents.keys())) # else: # docids = sorted(set(str(d) for d in docids)) # for d in docids: # lines = documents[d].split('\n') # tokenized = [line.strip().split(' ') for line in lines] # res[d] = tokenized return documents