File size: 16,021 Bytes
c4b2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from __future__ import division

import random
import sys

from PIL import Image

try:
    import accimage
except ImportError:
    accimage = None
import collections
import numbers

from torchvision.transforms import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

_pil_interpolation_to_str = {
    Image.NEAREST: "PIL.Image.NEAREST",
    Image.BILINEAR: "PIL.Image.BILINEAR",
    Image.BICUBIC: "PIL.Image.BICUBIC",
    Image.LANCZOS: "PIL.Image.LANCZOS",
    Image.HAMMING: "PIL.Image.HAMMING",
    Image.BOX: "PIL.Image.BOX",
}


class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, tgt):
        for t in self.transforms:
            img, tgt = t(img, tgt)
        return img, tgt

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string


class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img, tgt):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation), F.resize(
            tgt, self.size, Image.NEAREST
        )

    def __repr__(self):
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + "(size={0}, interpolation={1})".format(
            self.size, interpolate_str
        )


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img, tgt):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size), F.center_crop(tgt, self.size)

    def __repr__(self):
        return self.__class__.__name__ + "(size={0})".format(self.size)


class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is None, i.e no padding. If a sequence of length
            4 is provided, it is used to pad left, top, right, bottom borders
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
        pad_if_needed (boolean): It will pad the image if smaller than the
            desired size to avoid raising an exception.
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

    """

    def __init__(
        self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"
    ):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img, tgt):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
            tgt = F.pad(tgt, self.padding, self.fill, self.padding_mode)

        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
            img = F.pad(
                img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode
            )
            tgt = F.pad(
                tgt, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode
            )
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
            img = F.pad(
                img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode
            )
            tgt = F.pad(
                tgt, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode
            )

        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w), F.crop(tgt, i, j, h, w)

    def __repr__(self):
        return self.__class__.__name__ + "(size={0}, padding={1})".format(
            self.size, self.padding
        )


class RandomHorizontalFlip(object):
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, tgt):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
        if random.random() < self.p:
            return F.hflip(img), F.hflip(tgt)

        return img, tgt

    def __repr__(self):
        return self.__class__.__name__ + "(p={})".format(self.p)


class RandomVerticalFlip(object):
    """Vertically flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, tgt):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
        if random.random() < self.p:
            return F.vflip(img), F.vflip(tgt)
        return img, tgt

    def __repr__(self):
        return self.__class__.__name__ + "(p={})".format(self.p)


class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
        self.lambd = lambd

    def __call__(self, img, tgt):
        return self.lambd(img, tgt)

    def __repr__(self):
        return self.__class__.__name__ + "()"


class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
    """

    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = self._check_input(brightness, "brightness")
        self.contrast = self._check_input(contrast, "contrast")
        self.saturation = self._check_input(saturation, "saturation")
        self.hue = self._check_input(
            hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False
        )

    def _check_input(
        self, value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True
    ):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError(
                    "If {} is a single number, it must be non negative.".format(name)
                )
            value = [center - value, center + value]
            if clip_first_on_zero:
                value[0] = max(value[0], 0)
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError(
                "{} should be a single number or a list/tuple with lenght 2.".format(
                    name
                )
            )

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
            transforms.append(
                Lambda(
                    lambda img, tgt: (F.adjust_brightness(img, brightness_factor), tgt)
                )
            )

        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
            transforms.append(
                Lambda(lambda img, tgt: (F.adjust_contrast(img, contrast_factor), tgt))
            )

        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
            transforms.append(
                Lambda(
                    lambda img, tgt: (F.adjust_saturation(img, saturation_factor), tgt)
                )
            )

        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
            transforms.append(
                Lambda(lambda img, tgt: (F.adjust_hue(img, hue_factor), tgt))
            )

        random.shuffle(transforms)
        transform = Compose(transforms)

        return transform

    def __call__(self, img, tgt):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
        return transform(img, tgt)

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        format_string += "brightness={0}".format(self.brightness)
        format_string += ", contrast={0}".format(self.contrast)
        format_string += ", saturation={0}".format(self.saturation)
        format_string += ", hue={0})".format(self.hue)
        return format_string


class Normalize(object):
    """Normalize a tensor image with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutates the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """

    def __init__(self, mean, std, inplace=False):
        self.mean = mean
        self.std = std
        self.inplace = inplace

    def __call__(self, img, tgt):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
        # return F.normalize(img, self.mean, self.std, self.inplace), tgt
        return F.normalize(img, self.mean, self.std), tgt

    def __repr__(self):
        return self.__class__.__name__ + "(mean={0}, std={1})".format(
            self.mean, self.std
        )


class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
    """

    def __call__(self, img, tgt):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img), tgt

    def __repr__(self):
        return self.__class__.__name__ + "()"