File size: 8,184 Bytes
c4b2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import matplotlib.cm
import numpy as np
import skimage.feature
import skimage.filters
import skimage.io


def vec2im(V, shape=()):
    """
    Transform an array V into a specified shape - or if no shape is given assume a square output format.

    Parameters
    ----------

    V : numpy.ndarray
        an array either representing a matrix or vector to be reshaped into an two-dimensional image

    shape : tuple or list
        optional. containing the shape information for the output array if not given, the output is assumed to be square

    Returns
    -------

    W : numpy.ndarray
        with W.shape = shape or W.shape = [np.sqrt(V.size)]*2

    """

    if len(shape) < 2:
        shape = [np.sqrt(V.size)] * 2
        shape = map(int, shape)
    return np.reshape(V, shape)


def enlarge_image(img, scaling=3):
    """
    Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction.

    Parameters
    ----------

    img : numpy.ndarray
        array of shape [H x W] OR [H x W x D]

    scaling : int
        positive integer value > 0

    Returns
    -------

    out : numpy.ndarray
        two-dimensional array of shape [scaling*H x scaling*W]
        OR
        three-dimensional array of shape [scaling*H x scaling*W x D]
        depending on the dimensionality of the input
    """

    if scaling < 1 or not isinstance(scaling, int):
        print("scaling factor needs to be an int >= 1")

    if len(img.shape) == 2:
        H, W = img.shape

        out = np.zeros((scaling * H, scaling * W))
        for h in range(H):
            fh = scaling * h
            for w in range(W):
                fw = scaling * w
                out[fh : fh + scaling, fw : fw + scaling] = img[h, w]

    elif len(img.shape) == 3:
        H, W, D = img.shape

        out = np.zeros((scaling * H, scaling * W, D))
        for h in range(H):
            fh = scaling * h
            for w in range(W):
                fw = scaling * w
                out[fh : fh + scaling, fw : fw + scaling, :] = img[h, w, :]

    return out


def repaint_corner_pixels(rgbimg, scaling=3):
    """
    DEPRECATED/OBSOLETE.

    Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups).
    The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling.
    Assumes those image ares will pretty much never show evidence.

    Parameters
    ----------

    rgbimg : numpy.ndarray
        array of shape [H x W x 3]

    scaling : int
        positive integer value > 0

    Returns
    -------

    rgbimg : numpy.ndarray
        three-dimensional array of shape [scaling*H x scaling*W x 3]
    """

    # top left corner.
    rgbimg[0:scaling, 0:scaling, :] = (
        rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling, :]
    ) / 3.0
    # bottom right corner
    rgbimg[-scaling:, -scaling:, :] = (
        rgbimg[-1, -1 - scaling, :]
        + rgbimg[-1 - scaling, -1, :]
        + rgbimg[-1 - scaling, -1 - scaling, :]
    ) / 3.0
    return rgbimg


def digit_to_rgb(X, scaling=3, shape=(), cmap="binary"):
    """
    Takes as input an intensity array and produces a rgb image due to some color map

    Parameters
    ----------

    X : numpy.ndarray
        intensity matrix as array of shape [M x N]

    scaling : int
        optional. positive integer value > 0

    shape: tuple or list of its , length = 2
        optional. if not given, X is reshaped to be square.

    cmap : str
        name of color map of choice. default is 'binary'

    Returns
    -------

    image : numpy.ndarray
        three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
    """

    # create color map object from name string
    cmap = eval("matplotlib.cm.{}".format(cmap))

    image = enlarge_image(vec2im(X, shape), scaling)  # enlarge
    image = cmap(image.flatten())[..., 0:3].reshape(
        [image.shape[0], image.shape[1], 3]
    )  # colorize, reshape

    return image


def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap="bwr", normalize=True):
    """
    Takes as input an intensity array and produces a rgb image for the represented heatmap.
    optionally draws the outline of another input on top of it.

    Parameters
    ----------

    R : numpy.ndarray
        the heatmap to be visualized, shaped [M x N]

    X : numpy.ndarray
        optional. some input, usually the data point for which the heatmap R is for, which shall serve
        as a template for a black outline to be drawn on top of the image
        shaped [M x N]

    scaling: int
        factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness)
        after reshaping it using shape.

    shape: tuple or list, length = 2
        optional. if not given, X is reshaped to be square.

    sigma : double
        optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines.

    cmap : str
        optional. color map of choice

    normalize : bool
        optional. whether to normalize the heatmap to [-1 1] prior to colorization or not.

    Returns
    -------

    rgbimg : numpy.ndarray
        three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
    """

    # create color map object from name string
    cmap = eval("matplotlib.cm.{}".format(cmap))

    if normalize:
        R = R / np.max(np.abs(R))  # normalize to [-1,1] wrt to max relevance magnitude
        R = (R + 1.0) / 2.0  # shift/normalize to [0,1] for color mapping

    R = enlarge_image(R, scaling)
    rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3])
    # rgb = repaint_corner_pixels(rgb, scaling) #obsolete due to directly calling the color map with [0,1]-normalized inputs

    if not X is None:  # compute the outline of the input
        # X = enlarge_image(vec2im(X,shape), scaling)
        xdims = X.shape
        Rdims = R.shape

        # if not np.all(xdims == Rdims):
        #     print 'transformed heatmap and data dimension mismatch. data dimensions differ?'
        #     print 'R.shape = ',Rdims, 'X.shape = ', xdims
        #     print 'skipping drawing of outline\n'
        # else:
        #     #edges = skimage.filters.canny(X, sigma=sigma)
        #     edges = skimage.feature.canny(X, sigma=sigma)
        #     edges = np.invert(np.dstack([edges]*3))*1.0
        #     rgb *= edges # set outline pixels to black color

    return rgb


def save_image(rgb_images, path, gap=2):
    """
    Takes as input a list of rgb images, places them next to each other with a gap and writes out the result.

    Parameters
    ----------

    rgb_images : list , tuple, collection. such stuff
        each item in the collection is expected to be an rgb image of dimensions [H x _ x 3]
        where the width is variable

    path : str
        the output path of the assembled image

    gap : int
        optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images

    Returns
    -------

    image : numpy.ndarray
        the assembled image as written out to path
    """

    sz = []
    image = []
    for i in range(len(rgb_images)):
        if not sz:
            sz = rgb_images[i].shape
            image = rgb_images[i]
            gap = np.zeros((sz[0], gap, sz[2]))
            continue
        if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]:
            print("image", i, "differs in size. unable to perform horizontal alignment")
            print("expected: Hx_xD = {0}x_x{1}".format(sz[0], sz[1]))
            print(
                "got     : Hx_xD = {0}x_x{1}".format(
                    rgb_images[i].shape[0], rgb_images[i].shape[1]
                )
            )
            print("skipping image\n")
        else:
            image = np.hstack((image, gap, rgb_images[i]))

    image *= 255
    image = image.astype(np.uint8)

    print("saving image to ", path)
    skimage.io.imsave(path, image)
    return image