import os import json import pandas as pd import requests from openai import OpenAI from datetime import date from datetime import datetime from dotenv import load_dotenv import sys import io import base64 import urllib from PIL import Image import io import cv2 from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image # DiffusionPipeline import torch #import matplotlib.pyplot as plt import prompts as pr pf_api_url = "https://graphql.probablefutures.org" #pf_token_audience = "https://graphql.probablefutures.com" #pf_token_url = "https://probablefutures.us.auth0.com/oauth/token" load_dotenv() client = OpenAI() model = "gpt-4o" #"gpt-4-0125-preview" # gpt-4 #gpt-3.5-turbo-16k pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16") # digiplay/Landscape_PhotoReal_v1 pipeline_image2image = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16") # digiplay/Landscape_PhotoReal_v1 pipeline_text2image.to("cuda") pipeline_image2image.to("cuda") def convert_to_iso8601(date_str): try: # Parse the date string to a datetime object date_obj = datetime.strptime(date_str, "%Y-%m-%d") # Format the datetime object to ISO 8601 format with timezone offset iso8601_date = date_obj.strftime("%Y-%m-%dT%H:%M:%S+00:00") return iso8601_date except ValueError: # Return the original string if it's not in the expected date format return date_str def get_pf_token(): client_id = os.getenv("CLIENT_ID") client_secret = os.getenv("CLIENT_SECRET") url = 'https://graphql.probablefutures.org/auth/token' # Encode the client credentials encoded_credentials = base64.b64encode(f"{client_id}:{client_secret}".encode()).decode() headers = { 'Authorization': 'Basic ' + encoded_credentials } try: response = requests.get(url, headers=headers) response.raise_for_status() # This will raise an exception for HTTP errors data = response.json() access_token = data['access_token'] return access_token except requests.exceptions.RequestException as e: print('There was a problem with your request:', e) return None def json_to_dataframe(json_data, address, country): # Extract the relevant part of the JSON data json_data = json.loads(json_data) data = json_data['data']['getDatasetStatistics']['datasetStatisticsResponses'] # Convert to a DataFrame df = pd.DataFrame(data) # Normalize the 'info' column if needed #if not df['info'].apply(lambda x: x == {}).all(): # info_df = pd.json_normalize(df['info']) # df = df.drop(columns=['info']).join(info_df) df['address'] = address df['country'] = country df = df[['address', 'country', 'name', 'midValue', 'highValue', 'unit', 'mapCategory']] #df = df[df['name'].str.contains('Change')] df = df[~((df['midValue'] == '0.0') & (df['highValue'] == '0.0'))] df.reset_index(drop=True, inplace=True) return df def summary_completion(address, country, output, user_question): content = f"Please answer the user question {user_question} for the location of {address} {country}. Use the information that was just provided previously to the user: {output}" print(content) completion = client.chat.completions.create( model=model, #"gpt-4-0125-preview", # gpt-4 #gpt-3.5-turbo-16k messages=[ {"role": "system", "content": pr.user_question_prompt}, {"role": "user", "content": content} ], stream=True ) return completion#.choices[0].message.content # the 'content' object is a dataframe so it's wrapped in a str(to_json()) call def story_completion(story_system_prompt, units, content): completion = client.chat.completions.create( model=model, #"gpt-4-0125-preview", # gpt-4 #gpt-3.5-turbo-16k messages=[ {"role": "system", "content": str(story_system_prompt + ". Be sure to describe the result using the following temperature scale: " + units)}, {"role": "user", "content": str(content.to_json())} ], stream=True ) return completion#.choices[0].message.content # need GPU to run this part; uncomment lines 31 & 32 def get_image_response_SDXL(prompt, image_path=None, filtered_keywords=None): #i'm passing a file path to image when using inpainting; FOR NOW print('starting SDXL') # Check here for prompt language tips: https://stable-diffusion-art.com/sdxl-prompts/ if image_path is None: # Generate image from text # using flash attention for memory optimization # https://huggingface.co/docs/diffusers/en/optimization/memory#memory-efficient-attention #with torch.inference_mode(): result_image = pipeline_text2image( prompt=prompt, num_inference_steps=2, guidance_scale=0.0).images[0] # Assuming default image dimensions or specify if required else: # Load the image from the path #img = Image.open(image_path) #plt.imshow(img) #plt.title("Loaded Image") #plt.show() #if strength == None: # strength = 0.51 # adding inpaiting keywords for 2.0 and 3.0 warming scenarios modified_prompt = filtered_keywords if filtered_keywords else prompt print(modified_prompt) # Modify existing image based on new prompt # using flash attention https://huggingface.co/docs/diffusers/en/optimization/memory#memory-efficient-attention #with torch.inference_mode(): result_image = pipeline_image2image( prompt=modified_prompt, image=image_path, strength=0.55, guidance_scale=0.0, num_inference_steps=2).images[0] # negative_prompt="deformed faces, distorted faces, mangled hands, extra legs", # Save the image to a byte buffer buffer = io.BytesIO() result_image.save(buffer, format='PNG') image_bytes = buffer.getvalue() return result_image, image_bytes def summarizer(content, inpainting=None): if inpainting is None: system_prompt = pr.summarizer_prompt else: system_prompt = pr.summarizer_prompt_inpainting completion = client.chat.completions.create( model=model, #"gpt-3.5-turbo-16k", # gpt-4 #gpt-4-0125-preview messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": content} ], stream=False ) print(str(completion.choices[0].message.content))# + " Photorealism, Sharp Image, wide shot") return str(completion.choices[0].message.content)# + " realistic humans " #" long exposure, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed" def generate_inpainting_keywords(data_changes): # Check if the DataFrame is empty or missing the necessary columns if data_changes.empty or 'midValue' not in data_changes.columns: return ["no significant change"] data_changes['name'] = data_changes['name'].str.replace('“', '', regex=False).str.replace('”', '', regex=False).str.replace('"', '', regex=False) print(data_changes) # Example: Select the change with the highest 'midValue' as the most significant # Find the index of the row with the highest 'midValue' idx_max_midValue = data_changes['midValue'].astype('float').abs().idxmax() # Retrieve the 'name' from the row with the highest 'midValue' most_significant_change_name = data_changes.loc[idx_max_midValue, 'name'] print(most_significant_change_name) #change_name = most_significant_change['name'] # Assuming the name of the change is in the 'name' column #impact = 'increase' if most_significant_change['midValue'] > 0 else 'decrease' # Mapping of change types to potential keywords climate_change_qualifiers = { 'Change in total annual precipitation': 'heavy rain, flooding, gloomy skies', 'Change in wettest 90 days': 'increased rainfall, frequent storms, saturated grounds', 'Change in dry hot days': 'intense sunlight, heat haze, dry atmosphere', 'Change in frequency of 1-in-100-year storm': 'severe storms, extreme weather events, damaged infrastructure', 'Change in precipitation 1-in-100-year storm': 'torrential rain, flash floods, overflowing rivers', 'Likelihood of year-plus extreme drought': 'faded colors, heat mirages, stark shadows', 'Likelihood of year-plus drought': 'heat haze, dusty air, sun-bleached surfaces', 'Change in wildfire danger days': 'smoky haze, distant glow of fires, ash particles in air' } # Retrieve qualifiers for the most significant change category qualifiers = climate_change_qualifiers.get(most_significant_change_name, ["change not specified"]) #qualifiers_string = ", ".join([str(qualifier) for qualifier in qualifiers]) print(qualifiers) return qualifiers