from pprint import pprint from langchain_openai import OpenAIEmbeddings from langchain_core.vectorstores import InMemoryVectorStore embeddings = OpenAIEmbeddings(model="text-embedding-3-large") vector_store = InMemoryVectorStore.load("/code/data/vectorstore.json", embedding=embeddings) # query = "ryan brown" # query = "defensive midfielder" query = "* FC Everglade" results = vector_store.similarity_search(query, k=3) results = vector_store.similarity_search( query, k=3, filter=lambda doc: doc.metadata.get("type") == "player", ) for result in results: pprint(result.page_content) print("---")