import cv2 import numpy as np import gradio as gr # Farklı filtre fonksiyonları def apply_gaussian_blur(frame, blur_level=1): ksize = (2 * blur_level + 1, 2 * blur_level + 1) return cv2.GaussianBlur(frame, ksize, 0) def apply_sharpening_filter(frame): kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) return cv2.filter2D(frame, -1, kernel) def apply_edge_detection(frame): return cv2.Canny(frame, 100, 200) def apply_invert_filter(frame): return cv2.bitwise_not(frame) def adjust_brightness_contrast(frame, alpha=1.0, beta=50): return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta) def adjust_saturation(frame, saturation=1.0): hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV).astype("float32") hsv[..., 1] *= saturation hsv[..., 1] = np.clip(hsv[..., 1], 0, 255) return cv2.cvtColor(hsv.astype("uint8"), cv2.COLOR_HSV2BGR) def adjust_hue(frame, hue_shift=0): hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hsv[..., 0] = (hsv[..., 0].astype(int) + hue_shift) % 180 return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) def adjust_gamma(frame, gamma=1.0): inv_gamma = 1.0 / gamma table = (np.array([((i / 255.0) ** inv_gamma) * 255 for i in range(256)]) .astype("uint8")) return cv2.LUT(frame, table) def apply_grayscale_filter(frame): return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) def apply_sepia_filter(frame): sepia_filter = np.array([[0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189]]) return cv2.transform(frame, sepia_filter) def apply_fall_filter(frame): fall_filter = np.array([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]) return cv2.transform(frame, fall_filter) # Filtre uygulama fonksiyonu def apply_filter(filter_type, input_image=None, alpha=1.0, beta=50, saturation=1.0, hue_shift=0, gamma=1.0, blur_level=1): if input_image is not None: frame = input_image else: cap = cv2.VideoCapture(0) ret, frame = cap.read() cap.release() if not ret: return "Web kameradan görüntü alınamadı" # Seçilen filtreyi uygula if filter_type == "Gaussian Blur": frame = apply_gaussian_blur(frame, blur_level=blur_level) elif filter_type == "Keskinleştir": frame = apply_sharpening_filter(frame) elif filter_type == "Kenar Algılama": frame = apply_edge_detection(frame) elif filter_type == "Ters Çevir": frame = apply_invert_filter(frame) elif filter_type == "Gri Tonlama": frame = apply_grayscale_filter(frame) elif filter_type == "Sepya": frame = apply_sepia_filter(frame) elif filter_type == "Sonbahar": frame = apply_fall_filter(frame) # Tüm filtrelerden bağımsız parametreleri uygula frame = adjust_brightness_contrast(frame, alpha=alpha, beta=beta) frame = adjust_saturation(frame, saturation=saturation) frame = adjust_hue(frame, hue_shift=hue_shift) frame = adjust_gamma(frame, gamma=gamma) return frame # Gradio arayüzü with gr.Blocks() as demo: gr.Markdown("# Web Kameradan Canlı Filtreleme") # Filtre seçenekleri filter_type = gr.Dropdown( label="Filtre Seçin", choices=["Gaussian Blur", "Keskinleştir", "Kenar Algılama", "Ters Çevir", "Parlaklık/Kontrast", "Doygunluk", "Renk Tonu", "Gama", "Gri Tonlama", "Sepya", "Sonbahar"], value="Gaussian Blur" ) # Ayar kaydırıcıları alpha_slider = gr.Slider(0.5, 3.0, value=1.0, label="Parlaklık") beta_slider = gr.Slider(-100, 100, value=50, label="Kontrast") saturation_slider = gr.Slider(0.0, 3.0, value=1.0, label="Doygunluk") hue_slider = gr.Slider(-90, 90, value=0, label="Renk Tonu Değişimi") gamma_slider = gr.Slider(0.1, 3.0, value=1.0, label="Gama") blur_slider = gr.Slider(1, 10, value=1, label="Bulanıklık Seviyesi") # Görüntü yükleme alanı input_image = gr.Image(label="Resim Yükle", type="numpy") # Çıktı için görüntü output_image = gr.Image(label="Filtre Uygulandı") # Filtre uygula butonu apply_button = gr.Button("Filtreyi Uygula") # Butona tıklanınca filtre uygulama fonksiyonu apply_button.click( fn=apply_filter, inputs=[filter_type, input_image, alpha_slider, beta_slider, saturation_slider, hue_slider, gamma_slider, blur_slider], outputs=output_image ) # Gradio arayüzünü başlat demo.launch()