from .BaseLLM import BaseLLM from openai import OpenAI import os class Qwen(BaseLLM): def __init__(self, model="qwen-max"): # qwen-max, qwen-plus, qwen-turbo super(Qwen, self).__init__() self.client = OpenAI( api_key=os.getenv("DASHSCOPE_API_KEY"), base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) self.model_name = model # add api_base self.messages = [] def initialize_message(self): self.messages = [] def ai_message(self, payload): self.messages.append({"role": "ai", "content": payload}) def system_message(self, payload): self.messages.append({"role": "system", "content": payload}) def user_message(self, payload): self.messages.append({"role": "user", "content": payload}) def get_response(self,temperature = 0.8): completion = self.client.chat.completions.create( model=self.model_name, messages=self.messages, temperature=temperature, top_p=0.8 ) return completion.choices[0].message.content def chat(self,text,temperature = 0.8): self.initialize_message() self.user_message(text) response = self.get_response(temperature = temperature) return response def print_prompt(self): for message in self.messages: print(message)