File size: 14,562 Bytes
95d56e1 ee1d449 a35b6e4 95d56e1 ee1d449 95d56e1 ee1d449 95d56e1 1a198c5 a35b6e4 95d56e1 a35b6e4 95d56e1 a35b6e4 95d56e1 a35b6e4 95d56e1 a35b6e4 95d56e1 a35b6e4 95d56e1 07ad2f7 f8d8950 95d56e1 ee1d449 95d56e1 de0aa6a ee1d449 d3d3034 1eb82ce ee1d449 de0aa6a 95d56e1 a35b6e4 95d56e1 a35b6e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
import time
import random
import pandas as pd
import streamlit as st
import datetime
import uuid
from huggingface_hub import HfApi, login, CommitScheduler
from datasets import load_dataset
import openai
from openai import OpenAI
# File Path
DATA_PATH = "Dr-En-space-test.csv"
DATA_REPO = "M-A-D/dar-en-space-test"
api = hf.HfApi()
access_token_write = "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"
login(token=access_token_write)
repo_id = "M-A-D/dar-en-space-test"
st.set_page_config(layout="wide")
# Initialize the ParquetScheduler
class ParquetScheduler(CommitScheduler):
"""
Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
call will result in 1 row in your final dataset.
```py
# Start scheduler
>>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")
# Append some data to be uploaded
>>> scheduler.append({...})
>>> scheduler.append({...})
>>> scheduler.append({...})
```
The scheduler will automatically infer the schema from the data it pushes.
Optionally, you can manually set the schema yourself:
```py
>>> scheduler = ParquetScheduler(
... repo_id="my-parquet-dataset",
... schema={
... "prompt": {"_type": "Value", "dtype": "string"},
... "negative_prompt": {"_type": "Value", "dtype": "string"},
... "guidance_scale": {"_type": "Value", "dtype": "int64"},
... "image": {"_type": "Image"},
... },
... )
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
possible values.
"""
def __init__(
self,
*,
repo_id: str,
schema: Optional[Dict[str, Dict[str, str]]] = None,
every: Union[int, float] = 5,
path_in_repo: Optional[str] = "data",
repo_type: Optional[str] = "dataset",
revision: Optional[str] = None,
private: bool = False,
token: Optional[str] = None,
allow_patterns: Union[List[str], str, None] = None,
ignore_patterns: Union[List[str], str, None] = None,
hf_api: Optional[HfApi] = None,
) -> None:
super().__init__(
repo_id=repo_id,
folder_path="dummy", # not used by the scheduler
every=every,
path_in_repo=path_in_repo,
repo_type=repo_type,
revision=revision,
private=private,
token=token,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
hf_api=hf_api,
)
self._rows: List[Dict[str, Any]] = []
self._schema = schema
def append(self, row: Dict[str, Any]) -> None:
"""Add a new item to be uploaded."""
with self.lock:
self._rows.append(row)
def push_to_hub(self):
# Check for new rows to push
with self.lock:
rows = self._rows
self._rows = []
if not rows:
return
print(f"Got {len(rows)} item(s) to commit.")
# Load images + create 'features' config for datasets library
schema: Dict[str, Dict] = self._schema or {}
path_to_cleanup: List[Path] = []
for row in rows:
for key, value in row.items():
# Infer schema (for `datasets` library)
if key not in schema:
schema[key] = _infer_schema(key, value)
# Load binary files if necessary
if schema[key]["_type"] in ("Image", "Audio"):
# It's an image or audio: we load the bytes and remember to cleanup the file
file_path = Path(value)
if file_path.is_file():
row[key] = {
"path": file_path.name,
"bytes": file_path.read_bytes(),
}
path_to_cleanup.append(file_path)
# Complete rows if needed
for row in rows:
for feature in schema:
if feature not in row:
row[feature] = None
# Export items to Arrow format
table = pa.Table.from_pylist(rows)
# Add metadata (used by datasets library)
table = table.replace_schema_metadata(
{"huggingface": json.dumps({"info": {"features": schema}})}
)
# Write to parquet file
archive_file = tempfile.NamedTemporaryFile()
pq.write_table(table, archive_file.name)
# Upload
self.api.upload_file(
repo_id=self.repo_id,
repo_type=self.repo_type,
revision=self.revision,
path_in_repo=f"{uuid.uuid4()}.parquet",
path_or_fileobj=archive_file.name,
)
print(f"Commit completed.")
# Cleanup
archive_file.close()
for path in path_to_cleanup:
path.unlink(missing_ok=True)
# Define the ParquetScheduler instance with your repo details
scheduler = ParquetScheduler(repo_id=repo_id)
# Function to append new translation data to the ParquetScheduler
def append_translation_data(original, translation, translated, corrected=False):
data = {
"original": original,
"translation": translation,
"translated": translated,
"corrected": corrected,
"timestamp": datetime.datetime.utcnow().isoformat(),
"id": str(uuid.uuid4()) # Unique identifier for each translation
}
scheduler.append(data)
# Load data
def load_data():
return pd.DataFrame(load_dataset(DATA_REPO,download_mode="force_redownload",split='test'))
#def save_data(data):
# data.to_csv(DATA_PATH, index=False)
# # to_save = datasets.Dataset.from_pandas(data)
# api.upload_file(
# path_or_fileobj="./Dr-En-space-test.csv",
# path_in_repo="Dr-En-space-test.csv",
# repo_id=DATA_REPO,
# repo_type="dataset",
#)
# # to_save.push_to_hub(DATA_REPO)
def skip_correction():
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
else:
st.session_state.orig_sentence = "No more sentences to be corrected"
st.session_state.orig_translation = "No more sentences to be corrected"
st.title("Darija Translation Corpus Collection")
if "data" not in st.session_state:
st.session_state.data = load_data()
if "sentence" not in st.session_state:
untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
if untranslated_sentences:
st.session_state.sentence = random.choice(untranslated_sentences)
else:
st.session_state.sentence = "No more sentences to translate"
if "orig_translation" not in st.session_state:
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
noncorrected_translations = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['translation'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data.loc[st.session_state.data.sentence == st.session_state.orig_sentence]['translation'].values[0]
else:
st.session_state.orig_sentence = "No more sentences to be corrected"
st.session_state.orig_translation = "No more sentences to be corrected"
if "user_translation" not in st.session_state:
st.session_state.user_translation = ""
with st.sidebar:
st.subheader("About")
st.markdown("""This is app is designed to collect Darija translation corpus.""")
tab1, tab2, tab3 = st.tabs(["Translation", "Correction", "Auto-Translate"])
with tab1:
with st.container():
st.subheader("Original Text:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.sentence), unsafe_allow_html=True)
st.subheader("Translation:")
st.session_state.user_translation = st.text_area("Enter your translation here:", value=st.session_state.user_translation)
if st.button("💾 Save"):
if st.session_state.user_translation:
# Append data to be saved
append_translation_data(
original=st.session_state.sentence,
translation=st.session_state.user_translation,
translated=True
)
st.session_state.user_translation = ""
# st.toast("Saved!", icon="👏")
st.success("Saved!")
# Update the sentence for the next iteration.
untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
if untranslated_sentences:
st.session_state.sentence = random.choice(untranslated_sentences)
else:
st.session_state.sentence = "No more sentences to translate"
time.sleep(0.5)
# Rerun the app
st.rerun()
with tab2:
with st.container():
st.subheader("Original Darija Text:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_sentence), unsafe_allow_html=True)
with st.container():
st.subheader("Original English Translation:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_translation), unsafe_allow_html=True)
st.subheader("Corrected Darija Translation:")
corrected_translation = st.text_area("Enter the corrected Darija translation here:")
if st.button("💾 Save Translation"):
if corrected_translation:
# Append data to be saved
append_translation_data(
original=st.session_state.orig_sentence,
translation=corrected_translation,
translated=True,
corrected=True
)
st.success("Saved!")
# Update the sentence for the next iteration.
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
# noncorrected_sentences = st.session_state.data[st.session_state.data['corrected'] == False]['sentence'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
else:
st.session_state.orig_translation = "No more sentences to be corrected"
corrected_translation = "" # Reset the input value after saving
st.button("⏩ Skip to the Next Pair", key="skip_button", on_click=skip_correction)
with tab3:
st.subheader("Auto-Translate")
# User input for OpenAI API key
openai_api_key = st.text_input("Paste your OpenAI API key:")
# Slider for the user to choose the number of samples to translate
num_samples = st.slider("Select the number of samples to translate", min_value=1, max_value=100, value=10)
# Estimated cost display
cost = num_samples * 0.0012
st.write(f"The estimated cost for translating {num_samples} samples is: ${cost:.4f}")
if st.button("Do the MAGIC with Auto-Translate ✨"):
if openai_api_key:
openai.api_key = openai_api_key
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
)
# Get 10 samples from the dataset for translation
samples_to_translate = st.session_state.data.sample(10)['sentence'].tolist()
# System prompt for translation assistant
translation_prompt = """
You are a helpful AI-powered translation assistant designed for users seeking reliable translation assistance. Your primary function is to provide context-aware translations from Moroccan Arabic (Darija) to English.
"""
auto_translations = []
for sentence in samples_to_translate:
# Create messages for the chat model
messages = [
{"role": "system", "content": translation_prompt},
{"role": "user", "content": f"Translate the following sentence to English: '{sentence}'"}
]
# Perform automatic translation using OpenAI GPT-3.5-turbo model
response = client.chat.completions.create(
# model="gpt-3.5-turbo",
model="gpt-4-1106-preview",
# api_key=openai_api_key,
messages=messages
)
# Extract the translated text from the response
translated_text = response.choices[0].message['content'].strip()
# Append the translated text to the list
auto_translations.append(translated_text)
# Update the dataset with auto-translations
st.session_state.data.loc[
st.session_state.data['sentence'].isin(samples_to_translate),
'translation'
] = auto_translations
# Append data to be saved
append_translation_data(
original=st.session_state.orig_sentence,
translation=corrected_translation,
translated=True,
corrected=True
)
st.success("Auto-Translations saved!")
else:
st.warning("Please paste your OpenAI API key.")
# Start the ParquetScheduler
if __name__ == "__main__":
scheduler.start() |