File size: 14,562 Bytes
95d56e1
 
 
ee1d449
 
a35b6e4
 
 
95d56e1
ee1d449
95d56e1
ee1d449
95d56e1
 
 
 
 
1a198c5
 
a35b6e4
 
 
95d56e1
 
a35b6e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d56e1
 
 
 
 
a35b6e4
 
 
 
 
 
 
 
 
 
95d56e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b6e4
 
 
 
 
 
 
95d56e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b6e4
95d56e1
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b6e4
 
 
 
 
 
 
95d56e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ad2f7
 
 
 
 
 
 
 
f8d8950
95d56e1
 
 
ee1d449
 
 
 
 
95d56e1
 
 
de0aa6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1d449
d3d3034
1eb82ce
ee1d449
 
de0aa6a
 
 
 
 
 
 
95d56e1
 
 
 
 
 
 
a35b6e4
 
 
 
 
 
 
 
95d56e1
 
 
 
 
a35b6e4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
import time
import random
import pandas as pd
import streamlit as st
import datetime
import uuid
from huggingface_hub import HfApi, login, CommitScheduler
from datasets import load_dataset

import openai
from openai import OpenAI

# File Path
DATA_PATH = "Dr-En-space-test.csv"
DATA_REPO = "M-A-D/dar-en-space-test"

api = hf.HfApi()
access_token_write = "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"
login(token=access_token_write)
repo_id = "M-A-D/dar-en-space-test"

st.set_page_config(layout="wide")

# Initialize the ParquetScheduler
class ParquetScheduler(CommitScheduler):
    """
    Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
    call will result in 1 row in your final dataset.

    ```py
    # Start scheduler
    >>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")

    # Append some data to be uploaded
    >>> scheduler.append({...})
    >>> scheduler.append({...})
    >>> scheduler.append({...})
    ```

    The scheduler will automatically infer the schema from the data it pushes.
    Optionally, you can manually set the schema yourself:

    ```py
    >>> scheduler = ParquetScheduler(
    ...     repo_id="my-parquet-dataset",
    ...     schema={
    ...         "prompt": {"_type": "Value", "dtype": "string"},
    ...         "negative_prompt": {"_type": "Value", "dtype": "string"},
    ...         "guidance_scale": {"_type": "Value", "dtype": "int64"},
    ...         "image": {"_type": "Image"},
    ...     },
    ... )

    See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
    possible values.
    """

    def __init__(
        self,
        *,
        repo_id: str,
        schema: Optional[Dict[str, Dict[str, str]]] = None,
        every: Union[int, float] = 5,
        path_in_repo: Optional[str] = "data",
        repo_type: Optional[str] = "dataset",
        revision: Optional[str] = None,
        private: bool = False,
        token: Optional[str] = None,
        allow_patterns: Union[List[str], str, None] = None,
        ignore_patterns: Union[List[str], str, None] = None,
        hf_api: Optional[HfApi] = None,
    ) -> None:
        super().__init__(
            repo_id=repo_id,
            folder_path="dummy",  # not used by the scheduler
            every=every,
            path_in_repo=path_in_repo,
            repo_type=repo_type,
            revision=revision,
            private=private,
            token=token,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            hf_api=hf_api,
        )

        self._rows: List[Dict[str, Any]] = []
        self._schema = schema

    def append(self, row: Dict[str, Any]) -> None:
        """Add a new item to be uploaded."""
        with self.lock:
            self._rows.append(row)

    def push_to_hub(self):
        # Check for new rows to push
        with self.lock:
            rows = self._rows
            self._rows = []
        if not rows:
            return
        print(f"Got {len(rows)} item(s) to commit.")

        # Load images + create 'features' config for datasets library
        schema: Dict[str, Dict] = self._schema or {}
        path_to_cleanup: List[Path] = []
        for row in rows:
            for key, value in row.items():
                # Infer schema (for `datasets` library)
                if key not in schema:
                    schema[key] = _infer_schema(key, value)

                # Load binary files if necessary
                if schema[key]["_type"] in ("Image", "Audio"):
                    # It's an image or audio: we load the bytes and remember to cleanup the file
                    file_path = Path(value)
                    if file_path.is_file():
                        row[key] = {
                            "path": file_path.name,
                            "bytes": file_path.read_bytes(),
                        }
                        path_to_cleanup.append(file_path)

        # Complete rows if needed
        for row in rows:
            for feature in schema:
                if feature not in row:
                    row[feature] = None

        # Export items to Arrow format
        table = pa.Table.from_pylist(rows)

        # Add metadata (used by datasets library)
        table = table.replace_schema_metadata(
            {"huggingface": json.dumps({"info": {"features": schema}})}
        )

        # Write to parquet file
        archive_file = tempfile.NamedTemporaryFile()
        pq.write_table(table, archive_file.name)

        # Upload
        self.api.upload_file(
            repo_id=self.repo_id,
            repo_type=self.repo_type,
            revision=self.revision,
            path_in_repo=f"{uuid.uuid4()}.parquet",
            path_or_fileobj=archive_file.name,
        )
        print(f"Commit completed.")

        # Cleanup
        archive_file.close()
        for path in path_to_cleanup:
            path.unlink(missing_ok=True)



# Define the ParquetScheduler instance with your repo details
scheduler = ParquetScheduler(repo_id=repo_id)


# Function to append new translation data to the ParquetScheduler
def append_translation_data(original, translation, translated, corrected=False):
    data = {
        "original": original,
        "translation": translation,
        "translated": translated,
        "corrected": corrected,
        "timestamp": datetime.datetime.utcnow().isoformat(),
        "id": str(uuid.uuid4())  # Unique identifier for each translation
    }
    scheduler.append(data)


# Load data
def load_data():
    return pd.DataFrame(load_dataset(DATA_REPO,download_mode="force_redownload",split='test'))

#def save_data(data):
#   data.to_csv(DATA_PATH, index=False)
#    # to_save = datasets.Dataset.from_pandas(data)
#    api.upload_file(
#    path_or_fileobj="./Dr-En-space-test.csv",
#    path_in_repo="Dr-En-space-test.csv",
#    repo_id=DATA_REPO,
#    repo_type="dataset",
#)
#    # to_save.push_to_hub(DATA_REPO)

def skip_correction():
    noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
    if noncorrected_sentences:
        st.session_state.orig_sentence = random.choice(noncorrected_sentences)
        st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
    else:
        st.session_state.orig_sentence = "No more sentences to be corrected"
        st.session_state.orig_translation = "No more sentences to be corrected"

st.title("Darija Translation Corpus Collection")

if "data" not in st.session_state:
    st.session_state.data = load_data()

if "sentence" not in st.session_state:
    untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
    if untranslated_sentences:
        st.session_state.sentence = random.choice(untranslated_sentences)
    else:
        st.session_state.sentence = "No more sentences to translate"

if "orig_translation" not in st.session_state:
    noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
    noncorrected_translations = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['translation'].tolist()
    
    if noncorrected_sentences:
        st.session_state.orig_sentence = random.choice(noncorrected_sentences)
        st.session_state.orig_translation = st.session_state.data.loc[st.session_state.data.sentence == st.session_state.orig_sentence]['translation'].values[0]
    else:
        st.session_state.orig_sentence = "No more sentences to be corrected"
        st.session_state.orig_translation = "No more sentences to be corrected"

if "user_translation" not in st.session_state:
    st.session_state.user_translation = ""


with st.sidebar:
    st.subheader("About")
    st.markdown("""This is app is designed to collect Darija translation corpus.""")

tab1, tab2, tab3 = st.tabs(["Translation", "Correction", "Auto-Translate"])

with tab1:
    with st.container():
        st.subheader("Original Text:")
        
        st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.sentence), unsafe_allow_html=True)


    st.subheader("Translation:")
    st.session_state.user_translation = st.text_area("Enter your translation here:", value=st.session_state.user_translation)
    
    if st.button("💾 Save"):
        if st.session_state.user_translation:
            # Append data to be saved
            append_translation_data(
                original=st.session_state.sentence,
                translation=st.session_state.user_translation,
                translated=True
            )
            st.session_state.user_translation = ""
            # st.toast("Saved!", icon="👏")
            st.success("Saved!")
            
            # Update the sentence for the next iteration.
            untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
            if untranslated_sentences:
                st.session_state.sentence = random.choice(untranslated_sentences)
                
            else:
                st.session_state.sentence = "No more sentences to translate"
            
            time.sleep(0.5)
            # Rerun the app 
            st.rerun()


with tab2:
    with st.container():
        st.subheader("Original Darija Text:")
        st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_sentence), unsafe_allow_html=True)

    with st.container():
        st.subheader("Original English Translation:")
        st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_translation), unsafe_allow_html=True)
    
    st.subheader("Corrected Darija Translation:")
    corrected_translation = st.text_area("Enter the corrected Darija translation here:")

    if st.button("💾 Save Translation"):
        if corrected_translation:
            # Append data to be saved
            append_translation_data(
                original=st.session_state.orig_sentence,
                translation=corrected_translation,
                translated=True,
                corrected=True
            )
            st.success("Saved!")

            # Update the sentence for the next iteration.
            noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
            # noncorrected_sentences = st.session_state.data[st.session_state.data['corrected'] == False]['sentence'].tolist()
            if noncorrected_sentences:
                st.session_state.orig_sentence = random.choice(noncorrected_sentences)
                st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']

            else:
                st.session_state.orig_translation = "No more sentences to be corrected"

            corrected_translation = ""  # Reset the input value after saving

    st.button("⏩ Skip to the Next Pair", key="skip_button", on_click=skip_correction)

with tab3:
    st.subheader("Auto-Translate")

    # User input for OpenAI API key
    openai_api_key = st.text_input("Paste your OpenAI API key:")

    # Slider for the user to choose the number of samples to translate
    num_samples = st.slider("Select the number of samples to translate", min_value=1, max_value=100, value=10)

    # Estimated cost display
    cost = num_samples * 0.0012
    st.write(f"The estimated cost for translating {num_samples} samples is: ${cost:.4f}")

    if st.button("Do the MAGIC with Auto-Translate ✨"):
        if openai_api_key:
            openai.api_key = openai_api_key

            client = OpenAI(
                # defaults to os.environ.get("OPENAI_API_KEY")
                api_key=openai_api_key,
            )

            # Get 10 samples from the dataset for translation
            samples_to_translate = st.session_state.data.sample(10)['sentence'].tolist()

            # System prompt for translation assistant
            translation_prompt = """
            You are a helpful AI-powered translation assistant designed for users seeking reliable translation assistance. Your primary function is to provide context-aware translations from Moroccan Arabic (Darija) to English.
            """

            auto_translations = []

            for sentence in samples_to_translate:
                # Create messages for the chat model
                messages = [
                    {"role": "system", "content": translation_prompt},
                    {"role": "user", "content": f"Translate the following sentence to English: '{sentence}'"}
                ]

                # Perform automatic translation using OpenAI GPT-3.5-turbo model
                response = client.chat.completions.create(
                    # model="gpt-3.5-turbo",
                    model="gpt-4-1106-preview",
                    # api_key=openai_api_key,
                    messages=messages
                )

                # Extract the translated text from the response
                translated_text = response.choices[0].message['content'].strip()

                # Append the translated text to the list
                auto_translations.append(translated_text)

            # Update the dataset with auto-translations
            st.session_state.data.loc[
                st.session_state.data['sentence'].isin(samples_to_translate),
                'translation'
            ] = auto_translations

            # Append data to be saved
            append_translation_data(
                original=st.session_state.orig_sentence,
                translation=corrected_translation,
                translated=True,
                corrected=True
            )


            st.success("Auto-Translations saved!")

        else:
            st.warning("Please paste your OpenAI API key.")


# Start the ParquetScheduler
if __name__ == "__main__":
    scheduler.start()