File size: 8,982 Bytes
95d56e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0aa6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d56e1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import pandas as pd
import streamlit as st
import time
import random
import huggingface_hub as hf
import datasets
from datasets import load_dataset
from huggingface_hub import login
import openai


# File Path
DATA_PATH = "Dr-En-space-test.csv"
DATA_REPO = "M-A-D/dar-en-space-test"

st.set_page_config(layout="wide")

api = hf.HfApi()
access_token_write = "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"
login(token=access_token_write)

# Load data
def load_data():
    return pd.DataFrame(load_dataset(DATA_REPO,download_mode="force_redownload",split='test'))

def save_data(data):
    data.to_csv(DATA_PATH, index=False)
    # to_save = datasets.Dataset.from_pandas(data)
    api.upload_file(
    path_or_fileobj="./Dr-En-space-test.csv",
    path_in_repo="Dr-En-space-test.csv",
    repo_id=DATA_REPO,
    repo_type="dataset",
)
    # to_save.push_to_hub(DATA_REPO)

def skip_correction():
    noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
    if noncorrected_sentences:
        st.session_state.orig_sentence = random.choice(noncorrected_sentences)
        st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
    else:
        st.session_state.orig_sentence = "No more sentences to be corrected"
        st.session_state.orig_translation = "No more sentences to be corrected"

st.title("Darija Translation Corpus Collection")

if "data" not in st.session_state:
    st.session_state.data = load_data()

if "sentence" not in st.session_state:
    untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
    if untranslated_sentences:
        st.session_state.sentence = random.choice(untranslated_sentences)
    else:
        st.session_state.sentence = "No more sentences to translate"

if "orig_translation" not in st.session_state:
    noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
    noncorrected_translations = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['translation'].tolist()
    
    if noncorrected_sentences:
        st.session_state.orig_sentence = random.choice(noncorrected_sentences)
        st.session_state.orig_translation = st.session_state.data.loc[st.session_state.data.sentence == st.session_state.orig_sentence]['translation'].values[0]
    else:
        st.session_state.orig_sentence = "No more sentences to be corrected"
        st.session_state.orig_translation = "No more sentences to be corrected"

if "user_translation" not in st.session_state:
    st.session_state.user_translation = ""


with st.sidebar:
    st.subheader("About")
    st.markdown("""This is app is designed to collect Darija translation corpus.""")

# tab1, tab2 = st.tabs(["Translation", "Correction"])
tab1, tab2, tab3 = st.tabs(["Translation", "Correction", "Auto-Translate"])

with tab1:
    with st.container():
        st.subheader("Original Text:")
        
        st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.sentence), unsafe_allow_html=True)


    st.subheader("Translation:")
    st.session_state.user_translation = st.text_area("Enter your translation here:", value=st.session_state.user_translation)
    
    if st.button("💾 Save"):
        if st.session_state.user_translation:
            st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.sentence, 'translation'] = st.session_state.user_translation
            st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.sentence, 'translated'] = True
            save_data(st.session_state.data)
            
            st.session_state.user_translation = ""  # Reset the input value after saving
            
            # st.toast("Saved!", icon="👏")
            st.success("Saved!")
            
            # Update the sentence for the next iteration.
            untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
            if untranslated_sentences:
                st.session_state.sentence = random.choice(untranslated_sentences)
                
            else:
                st.session_state.sentence = "No more sentences to translate"
            
            time.sleep(0.5)
            # Rerun the app 
            st.rerun()

with tab2:
    with st.container():
        st.subheader("Original Darija Text:")
        st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_sentence), unsafe_allow_html=True)

    with st.container():
        st.subheader("Original English Translation:")
        st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_translation), unsafe_allow_html=True)
    
    st.subheader("Corrected Darija Translation:")
    corrected_translation = st.text_area("Enter the corrected Darija translation here:")

    if st.button("💾 Save Translation"):
        if corrected_translation:
            st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.orig_sentence, 'translation'] = corrected_translation
            st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.orig_sentence, 'correction'] = corrected_translation
            st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.orig_sentence, 'corrected'] = True
            save_data(st.session_state.data)

            st.success("Saved!")

            # Update the sentence for the next iteration.
            noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
            # noncorrected_sentences = st.session_state.data[st.session_state.data['corrected'] == False]['sentence'].tolist()
            if noncorrected_sentences:
                st.session_state.orig_sentence = random.choice(noncorrected_sentences)
                st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']

            else:
                st.session_state.orig_translation = "No more sentences to be corrected"

            corrected_translation = ""  # Reset the input value after saving

    st.button("⏩ Skip to the Next Pair", key="skip_button", on_click=skip_correction)

with tab3:
    st.subheader("Auto-Translate")

    # User input for OpenAI API key
    openai_api_key = st.text_input("Paste your OpenAI API key:")
   
    if st.button("Auto-Translate 10 Samples"):
        if openai_api_key:
            openai.api_key = openai_api_key

            # Get 10 samples from the dataset for translation
            samples_to_translate = st.session_state.data.sample(10)['sentence'].tolist()

            # System prompt for translation assistant
            translation_prompt = """
            You are a helpful AI-powered translation assistant designed for users seeking reliable translation assistance. Your primary function is to provide context-aware translations from Moroccan Arabic (Darija) to English.
            """

            auto_translations = []

            for sentence in samples_to_translate:
                # Create messages for the chat model
                messages = [
                    {"role": "system", "content": translation_prompt},
                    {"role": "user", "content": f"Translate the following sentence to English: '{sentence}'"}
                ]

                # Perform automatic translation using OpenAI GPT-3.5-turbo model
                response = openai.ChatCompletion.create(
                    model="gpt-3.5-turbo",
                    messages=messages,
                    api_key=openai_api_key
                )

                # Extract the translated text from the response
                translated_text = response.choices[0].message['content'].strip()

                # Append the translated text to the list
                auto_translations.append(translated_text)

            # Update the dataset with auto-translations
            st.session_state.data.loc[
                st.session_state.data['sentence'].isin(samples_to_translate),
                'translation'
            ] = auto_translations

            # Save the updated dataset
            save_data(st.session_state.data)

            st.success("Auto-Translations saved!")

        else:
            st.warning("Please paste your OpenAI API key.")