"""Contains all of the components that can be used with Gradio Interface / Blocks.
Along with the docs for each component, you can find the names of example demos that use
each component. These demos are located in the `demo` directory."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import json
import gradio as gr
# import openai
import os
import traceback
import requests
# import markdown
import csv
import mdtex2html
from pypinyin import lazy_pinyin
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
def postprocess(
self, y: List[Tuple[str | None, str | None]]
) -> List[Tuple[str | None, str | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML.
"""
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
# None if message is None else markdown.markdown(message),
# None if response is None else markdown.markdown(response),
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
def parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
firstline = False
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
"+line
text = "".join(lines)
return text
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False, retry_on_crash = False, stream = True): # repetition_penalty, top_k
if "猫娘" in inputs:
chatbot.append((inputs, '喵~主人请点击这个链接查看刺激内容哦~'))
yield chatbot, history, "status: 喵~"
print(f"########## 有人上钩了: {inputs} ##########")
return
print(f"====== 收到问题: {inputs} =======")
if retry_on_crash:
retry = True
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
chat_counter = len(history) // 2
print(f"chat_counter - {chat_counter}")
messages = []
if chat_counter:
for index in range(0, 2*chat_counter, 2):
temp1 = {}
temp1["role"] = "user"
temp1["content"] = history[index]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = history[index+1]
if temp1["content"] != "":
if temp2["content"] != "" or retry:
messages.append(temp1)
messages.append(temp2)
else:
messages[-1]['content'] = temp2['content']
if retry and chat_counter:
if retry_on_crash:
messages = messages[-6:]
messages.pop()
elif summary:
history = [*[i["content"] for i in messages[-2:]], "我们刚刚聊了什么?"]
messages.append(compose_user(
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。"))
else:
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
chat_counter += 1
messages = [compose_system(system_prompt), *messages]
# messages
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if not summary:
history.append(inputs)
else:
print("精简中...")
print(f"payload: {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
try:
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
except:
history.append("")
chatbot.append((inputs, ""))
yield history, chatbot, f"获取请求失败,请检查网络连接。"
return
token_counter = 0
partial_words = ""
counter = 0
if stream:
chatbot.append((parse_text(history[-1]), ""))
for chunk in response.iter_lines():
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
# decode each line as response data is in bytes
try:
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}"
yield chatbot, history, status_text
break
except Exception as e:
if not retry_on_crash:
print("正在尝试使用缩短的context重新生成……")
chatbot.pop()
history.append("")
yield next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=False, retry_on_crash=True, stream=False))
else:
msg = "☹️发生了错误:生成失败,请检查网络"
print(msg)
history.append(inputs, "")
chatbot.append(inputs, msg)
yield chatbot, history, "status: ERROR"
break
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}"
partial_words = partial_words + \
json.loads(chunk.decode()[6:])[
'choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chatbot[-1] = (parse_text(history[-2]), parse_text(history[-1]))
token_counter += 1
yield chatbot, history, status_text
else:
try:
responsejson = json.loads(response.text)
content = responsejson["choices"][0]["message"]["content"]
history.append(content)
chatbot.append((parse_text(history[-2]), parse_text(content)))
status_text = "精简完成"
except:
chatbot.append((parse_text(history[-1]), "☹️发生了错误,请检查网络连接或者稍后再试。"))
status_text = "status: ERROR"
yield chatbot, history, status_text
def delete_last_conversation(chatbot, history):
try:
if "☹️发生了错误" in chatbot[-1][1]:
chatbot.pop()
print(history)
return chatbot, history
history.pop()
history.pop()
chatbot.pop()
print(history)
return chatbot, history
except:
return chatbot, history
def save_chat_history(filename, system, history, chatbot):
if filename == "":
return
if not filename.endswith(".json"):
filename += ".json"
os.makedirs(HISTORY_DIR, exist_ok=True)
json_s = {"system": system, "history": history, "chatbot": chatbot}
print(json_s)
with open(os.path.join(HISTORY_DIR, filename), "w") as f:
json.dump(json_s, f)
def load_chat_history(filename, system, history, chatbot):
try:
print("Loading from history...")
with open(os.path.join(HISTORY_DIR, filename), "r") as f:
json_s = json.load(f)
print(json_s)
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
except FileNotFoundError:
print("File not found.")
return filename, system, history, chatbot
def sorted_by_pinyin(list):
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
def get_file_names(dir, plain=False, filetypes=[".json"]):
# find all json files in the current directory and return their names
files = []
try:
for type in filetypes:
files += [f for f in os.listdir(dir) if f.endswith(type)]
except FileNotFoundError:
files = []
files = sorted_by_pinyin(files)
if files == []:
files = [""]
if plain:
return files
else:
return gr.Dropdown.update(choices=files)
def get_history_names(plain=False):
return get_file_names(HISTORY_DIR, plain)
def load_template(filename, mode=0):
lines = []
print("Loading template...")
if filename.endswith(".json"):
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f:
lines = json.load(f)
lines = [[i["act"], i["prompt"]] for i in lines]
else:
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile:
reader = csv.reader(csvfile)
lines = list(reader)
lines = lines[1:]
if mode == 1:
return sorted_by_pinyin([row[0] for row in lines])
elif mode == 2:
return {row[0]:row[1] for row in lines}
else:
choices = sorted_by_pinyin([row[0] for row in lines])
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0])
def get_template_names(plain=False):
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
def get_template_content(templates, selection, original_system_prompt):
try:
return templates[selection]
except:
return original_system_prompt
def reset_state():
return [], []
def compose_system(system_prompt):
return {"role": "system", "content": system_prompt}
def compose_user(user_input):
return {"role": "user", "content": user_input}
def reset_textbox():
return gr.update(value='')