from ultralytics import YOLO from PIL import Image onn_xmodel=YOLO("best.onnx") import gradio as gr def detect_fraction(image): results=onn_xmodel.predict([image],stream=False,imgsz=512) #results res=results[0].plot() return Image.fromarray(res) demo=gr.Interface(fn=detect_fraction,inputs=gr.Image(type='pil',label='Upload your XRAY'), outputs=gr.Image(type='pil',label='Results'), examples=['image1_0_png.rf.99862308d714bff3f9c410adf5ca93ac.jpg', 'image1_1035_png.rf.d7493a5653bc3628f7a1b1ec0eb5de85.jpg', 'image1_1015_png.rf.3b7320c3c40771fa5532bf713a728b83.jpg', 'image1_1084_png.rf.d9da08b77872f6b4282f2700d216b9b3.jpg', 'image1_1311_png.rf.27646e931562cc3823c79f79472b8749.jpg', 'image1_145_png.rf.a69d928d011a93d25a95b7b8380ea25d.jpg'], #themes=gr.themes.Soft(primary_hue=gr.themes.colors.amber,secondary_hue=gr.themes.colors.blue), title="Detecting bone fractions") if __name__=="__main__": demo.launch(debug=True)