from basis import ScoreBasis import numpy as np class SSNR(ScoreBasis): def __init__(self): super(SSNR, self).__init__(name='SSNR') self.intrusive = False def windowed_scoring(self, audios, score_rate): if len(audios) != 2: return None return cal_SSNR(audios[0], audios[1], score_rate) def cal_SSNR(ref_wav, deg_wav, srate=16000, eps=1e-10): # obtained from https://github.com/wooseok-shin/MetricGAN-plus-pytorch/blob/main/metric_functions/metric_helper.py """ Segmental Signal-to-Noise Ratio Objective Speech Quality Measure This function implements the segmental signal-to-noise ratio as defined in [1, p. 45] (see Equation 2.12). """ clean_speech = ref_wav processed_speech = deg_wav clean_length = ref_wav.shape[0] processed_length = deg_wav.shape[0] # scale both to have same dynamic range. Remove DC too. clean_speech -= clean_speech.mean() processed_speech -= processed_speech.mean() processed_speech *= (np.max(np.abs(clean_speech)) / np.max(np.abs(processed_speech))) # global variables winlength = int(np.round(30 * srate / 1000)) # 30 msecs skiprate = winlength // 4 MIN_SNR = -10 MAX_SNR = 35 # For each frame, calculate SSNR num_frames = int(clean_length / skiprate - (winlength/skiprate)) start = 0 time = np.linspace(1, winlength, winlength) / (winlength + 1) window = 0.5 * (1 - np.cos(2 * np.pi * time)) segmental_snr = [] for frame_count in range(int(num_frames)): # (1) get the frames for the test and ref speech. # Apply Hanning Window clean_frame = clean_speech[start:start+winlength] processed_frame = processed_speech[start:start+winlength] clean_frame = clean_frame * window processed_frame = processed_frame * window # (2) Compute Segmental SNR signal_energy = np.sum(clean_frame ** 2) noise_energy = np.sum((clean_frame - processed_frame) ** 2) segmental_snr.append(10 * np.log10(signal_energy / (noise_energy + eps)+ eps)) segmental_snr[-1] = max(segmental_snr[-1], MIN_SNR) segmental_snr[-1] = min(segmental_snr[-1], MAX_SNR) start += int(skiprate) return sum(segmental_snr) / len(segmental_snr)