from basis import ScoreBasis import numpy as np from pesq import pesq from scores.helper import wss, llr, SSNR, trim_mos class CSIG(ScoreBasis): def __init__(self): super(CSIG, self).__init__(name='CSIG') self.score_rate = 16000 def windowed_scoring(self, audios, score_rate): if len(audios) != 2: return None return cal_CSIG(audios[0], audios[1], score_rate) def cal_CSIG(target_wav, pred_wav, fs): alpha = 0.95 # Compute WSS measure wss_dist_vec = wss(target_wav, pred_wav, fs) wss_dist_vec = sorted(wss_dist_vec, reverse=False) wss_dist = np.mean(wss_dist_vec[:int(round(len(wss_dist_vec) * alpha))]) # Compute LLR measure LLR_dist = llr(target_wav, pred_wav, fs) LLR_dist = sorted(LLR_dist, reverse=False) LLRs = LLR_dist LLR_len = round(len(LLR_dist) * alpha) llr_mean = np.mean(LLRs[:LLR_len]) # Compute the PESQ pesq_raw = pesq(fs, target_wav, pred_wav, 'wb') # Csig Csig = 3.093 - 1.029 * llr_mean + 0.603 * pesq_raw - 0.009 * wss_dist Csig = float(trim_mos(Csig)) return Csig