from basis import ScoreBasis import numpy as np import librosa EPS = 1e-12 class LSD(ScoreBasis): def __init__(self): super(LSD, self).__init__(name='LSD') self.intrusive = False self.mono = True def windowed_scoring(self, audios, score_rate): if len(audios) != 2: raise ValueError('NB_PESQ needs a reference and a test signals.') est = wav_to_spectrogram(audios[1], score_rate) target = wav_to_spectrogram(audios[0], score_rate) return cal_LSD(est, target) def wav_to_spectrogram(wav, rate): hop_length = int(rate / 100) n_fft = int(2048 / (48000 / rate)) spec = np.abs(librosa.stft(wav, hop_length=hop_length, n_fft=n_fft)) spec = np.transpose(spec, (1, 0)) return spec def cal_LSD(est, target): log_ratio = np.log10(target**2 / ((est + EPS) ** 2) + EPS) ** 2 lsd_ = np.mean(np.mean(log_ratio, axis=1) ** 0.5, axis=0) return lsd_