import torch #from transformers import pipeline #from transformers.pipelines.audio_utils import ffmpeg_read from speechscore import SpeechScore import gradio as gr MODEL_NAME = "alibabasglab/speechscore" BATCH_SIZE = 1 device = 0 if torch.cuda.is_available() else "cpu" mySpeechScore = SpeechScore([ 'PESQ' ]) # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): if seconds is not None: milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" else: # we have a malformed timestamp so just return it as is return seconds def score(file, task, return_timestamps): scores = mySpeechScore(test_path=file, reference_path=None, window=None, score_rate=16000, return_mean=True) return scores demo = gr.Blocks() file_score = gr.Interface( fn=score, inputs=[ gr.Audio(sources=["upload"], label="test file", type="filepath"), gr.Audio(sources=["upload"], label="reference file", type="filepath"), gr.Radio(["without reference", "with reference"], label="Task", info="choose non-instrusive or instrusive scoring"), #gr.Checkbox(default=False, label="Return timestamps"), ], outputs="text", #layout="horizontal", #theme="huggingface", title="Score speech from a file", description=( "Score audio inputs with the click of a button! Demo uses the" " commonly used speech quality assessment methods for the audio files" " of arbitrary length." ), examples=[ ["./example.flac", "score", True], ], cache_examples=True, allow_flagging="never", ) with demo: gr.TabbedInterface([file_score], ["Score Audio File"]) demo.launch()