from basis import ScoreBasis import numpy as np class SNR(ScoreBasis): def __init__(self): super(SNR, self).__init__(name='SNR') self.intrusive = False def windowed_scoring(self, audios, score_rate): if len(audios) != 2: raise ValueError('SNR needs a reference and a test signals.') return cal_SNR(audios[0], audios[1], score_rate) def cal_SNR(ref_wav, deg_wav, srate=16000, eps=1e-10): # obtained from https://github.com/wooseok-shin/MetricGAN-plus-pytorch/blob/main/metric_functions/metric_helper.py """ Segmental Signal-to-Noise Ratio Objective Speech Quality Measure This function implements the segmental signal-to-noise ratio as defined in [1, p. 45] (see Equation 2.12). """ clean_speech = ref_wav processed_speech = deg_wav clean_length = ref_wav.shape[0] processed_length = deg_wav.shape[0] # scale both to have same dynamic range. Remove DC too. clean_speech -= clean_speech.mean() processed_speech -= processed_speech.mean() processed_speech *= (np.max(np.abs(clean_speech)) / np.max(np.abs(processed_speech))) # Signal-to-Noise Ratio dif = ref_wav - deg_wav overall_snr = 10 * np.log10(np.sum(ref_wav ** 2) / (np.sum(dif ** 2) + 10e-20)) return overall_snr