class ScoreBasis: def __init__(self, name=None): # the score operates on the specified rate self.score_rate = None # is the score intrusive or non-intrusive ? self.intrusive = True #require a reference self.name = name def windowed_scoring(self, audios, score_rate): raise NotImplementedError(f'In {self.name}, windowed_scoring is not yet implemented') def scoring(self, data, window=None, score_rate=None, round_digits=None): """ calling the `windowed_scoring` function that should be specialised depending on the score.""" # imports import resampy from museval.metrics import Framing #checking rate audios = data['audio'] score_rate = data['rate'] if self.score_rate is not None: score_rate = self.score_rate if score_rate != data['rate']: for index, audio in enumerate(audios): audio = resampy.resample(audio, data['rate'], score_rate, axis=0) audios[index] = audio data['rate'] = score_rate data['audio'] = audios if window is not None: framer = Framing(window * score_rate, window * score_rate, maxlen) nwin = framer.nwin result = {} for (t, win) in enumerate(framer): result_t = self.windowed_scoring([audio[win] for audio in audios], score_rate) if result_t is not None: result[t] = result_t else: result = self.windowed_scoring(audios, score_rate) if result is None or not result: return None if round_digits is not None: if isinstance(result, dict): for key in result: result[key] = round(result[key], round_digits) else: result = round(result, round_digits) return result