from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch import uvicorn # Create FastAPI app app = FastAPI() # Load the tokenizer and model MODEL_NAME = "facebook/bart-large-cnn" # A lightweight summarization model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to("cpu") # Use "cuda" if you have a GPU # Define input format class InputText(BaseModel): text: str @app.post("/summarize") async def summarize_text(input_text: InputText): inputs = tokenizer(input_text.text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = model.generate(inputs.input_ids, max_length=150, min_length=50, length_penalty=2.0) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return {"summary": summary} # Ensure the application starts when running locally if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)