#!/usr/bin/env python from __future__ import annotations import os import pathlib import random import shlex import subprocess import gradio as gr import torch from huggingface_hub import snapshot_download if os.getenv('SYSTEM') == 'spaces': subprocess.run(shlex.split('pip uninstall -y modelscope')) subprocess.run( shlex.split( 'pip install git+https://github.com/modelscope/modelscope.git@refs/pull/207/head' )) from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline model_dir = pathlib.Path('weights') if not model_dir.exists(): model_dir.mkdir() snapshot_download('damo-vilab/modelscope-damo-text-to-video-synthesis', repo_type='model', local_dir=model_dir) DESCRIPTION = '# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)' if (SPACE_ID := os.getenv('SPACE_ID')) is not None: DESCRIPTION += f'\n

For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

' pipe = pipeline('text-to-video-synthesis', model_dir.as_posix()) def generate(prompt: str, seed: int) -> str: if seed == -1: seed = random.randint(0, 1000000) torch.manual_seed(seed) return pipe({'text': prompt})[OutputKeys.OUTPUT_VIDEO] examples = [ ['An astronaut riding a horse.', 0], ['A panda eating bamboo on a rock.', 0], ['Spiderman is surfing.', 0], ] with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): prompt = gr.Text(label='Prompt', max_lines=1) seed = gr.Slider( label='Seed', minimum=-1, maximum=1000000, step=1, value=-1, info='If set to -1, a different seed will be used each time.') run_button = gr.Button('Run') with gr.Column(): result = gr.Video(label='Result') inputs = [prompt, seed] gr.Examples(examples=examples, inputs=inputs, outputs=result, fn=generate, cache_examples=os.getenv('SYSTEM') == 'spaces') prompt.submit(fn=generate, inputs=inputs, outputs=result) run_button.click(fn=generate, inputs=inputs, outputs=result) demo.queue(api_open=False).launch()