import torch import yaml, os from diffusers.pipelines import FluxPipeline from typing import List, Union, Optional, Dict, Any, Callable from .transformer import tranformer_forward from .condition import Condition from diffusers.pipelines.flux.pipeline_flux import ( FluxPipelineOutput, calculate_shift, retrieve_timesteps, np, ) def prepare_params( prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: int = 28, timesteps: List[int] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 512, **kwargs: dict, ): return ( prompt, prompt_2, height, width, num_inference_steps, timesteps, guidance_scale, num_images_per_prompt, generator, latents, prompt_embeds, pooled_prompt_embeds, output_type, return_dict, joint_attention_kwargs, callback_on_step_end, callback_on_step_end_tensor_inputs, max_sequence_length, ) def seed_everything(seed: int = 42): torch.backends.cudnn.deterministic = True torch.manual_seed(seed) np.random.seed(seed) @torch.no_grad() def generate( pipeline: FluxPipeline, conditions: List[Condition] = None, model_config: Optional[Dict[str, Any]] = {}, condition_scale: float = 1.0, **params: dict, ): # model_config = model_config or get_config(config_path).get("model", {}) if condition_scale != 1: for name, module in pipeline.transformer.named_modules(): if not name.endswith(".attn"): continue module.c_factor = torch.ones(1, 1) * condition_scale self = pipeline ( prompt, prompt_2, height, width, num_inference_steps, timesteps, guidance_scale, num_images_per_prompt, generator, latents, prompt_embeds, pooled_prompt_embeds, output_type, return_dict, joint_attention_kwargs, callback_on_step_end, callback_on_step_end_tensor_inputs, max_sequence_length, ) = prepare_params(**params) height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 4.1. Prepare conditions condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3)) use_condition = conditions is not None or [] if use_condition: assert len(conditions) <= 1, "Only one condition is supported for now." pipeline.set_adapters( { 512: "subject_512", 1024: "subject_1024", }[height] ) for condition in conditions: tokens, ids, type_id = condition.encode(self) condition_latents.append(tokens) # [batch_size, token_n, token_dim] condition_ids.append(ids) # [token_n, id_dim(3)] condition_type_ids.append(type_id) # [token_n, 1] condition_latents = torch.cat(condition_latents, dim=1) condition_ids = torch.cat(condition_ids, dim=0) if condition.condition_type == "subject": delta = 32 if height == 512 else -32 # print(f"Condition delta: {delta}") condition_ids[:, 2] += delta condition_type_ids = torch.cat(condition_type_ids, dim=0) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) num_warmup_steps = max( len(timesteps) - num_inference_steps * self.scheduler.order, 0 ) self._num_timesteps = len(timesteps) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]).to(latents.dtype) # handle guidance if self.transformer.config.guidance_embeds: guidance = torch.tensor([guidance_scale], device=device) guidance = guidance.expand(latents.shape[0]) else: guidance = None noise_pred = tranformer_forward( self.transformer, model_config=model_config, # Inputs of the condition (new feature) condition_latents=condition_latents if use_condition else None, condition_ids=condition_ids if use_condition else None, condition_type_ids=condition_type_ids if use_condition else None, # Inputs to the original transformer hidden_states=latents, # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if output_type == "latent": image = latents else: latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = ( latents / self.vae.config.scaling_factor ) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if condition_scale != 1: for name, module in pipeline.transformer.named_modules(): if not name.endswith(".attn"): continue del module.c_factor if not return_dict: return (image,) return FluxPipelineOutput(images=image)