import os import gradio as gr from langchain_community.vectorstores import Chroma from transformers import RagTokenizer, RagSequenceForGeneration from sentence_transformers import SentenceTransformer from langchain import LLMChain, PromptTemplate from langchain_community.llms import HuggingFacePipeline #Konstanten ANTI_BOT_PW = os.getenv("CORRECT_VALIDATE") PATH_WORK = "." CHROMA_DIR = "/chroma/kkg" CHROMA_PDF = './chroma/kkg/pdf' CHROMA_WORD = './chroma/kkg/word' CHROMA_EXCEL = './chroma/kkg/excel' # Hugging Face Token direkt im Code setzen hf_token = os.getenv("HF_READ") os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_READ") # Initialisierung des Sentence-BERT Modells für die Embeddings embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Initialisierung von Tokenizer und RAG Modell mit Token tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq", token=hf_token) retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", token=hf_token, use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", token=hf_token) # Verbindung zur Chroma DB und Laden der Dokumente chroma_db = Chroma(embedding=embedding_model, persist_directory = PATH_WORK + CHROMA_DIR) # Erstellung eines HuggingFacePipeline LLM Modells llm_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer, retriever=retriever) llm = HuggingFacePipeline(pipeline=llm_pipeline) # Erstellen eines eigenen Retrievers mit Chroma DB und Embeddings #retriever = chroma_db.as_retriever() # Erstellung der RAG-Kette mit dem benutzerdefinierten Retriever #rag_chain = RagChain(model=model, retriever=retriever, tokenizer=tokenizer, vectorstore=chroma_db) ############################################# def document_retrieval_chroma2(): #HF embeddings ----------------------------------- #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) #etwas weniger rechenaufwendig: #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}) #oder einfach ohne Langchain: #embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") #ChromaDb um die embedings zu speichern db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) print ("Chroma DB bereit ...................") return db def get_rag_response(question): # Abfrage der relevanten Dokumente aus Chroma DB docs = chroma_db.search(question, top_k=5) passages = [doc['text'] for doc in docs] links = [doc.get('url', 'No URL available') for doc in docs] # Generieren der Antwort prompt_template = PromptTemplate(input_variables=["context", "question"], template="{context}\n\n{question}") prompt = prompt_template(context=" ".join(passages), question=question) answer = llm(prompt) # Zusammenstellen der Ausgabe response = { "answer": answer, "documents": [{"link": link, "passage": passage} for link, passage in zip(links, passages)] } return response # Funktion, die für den Chatbot genutzt wird def chatbot_response(user_input, chat_history=[]): response = get_rag_response(user_input) answer = response['answer'] documents = response['documents'] doc_links = "\n\n".join([f"Link: {doc['link']}\nPassage: {doc['passage']}" for doc in documents]) bot_response = f"{answer}\n\nRelevant Documents:\n{doc_links}" chat_history.append((user_input, bot_response)) return chat_history, chat_history ############################# #GUI......... def user (user_input, history): return "", history + [[user_input, None]] with gr.Blocks() as chatbot: chat_interface = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Löschen") #Buttons listener msg.submit(user, [msg, chat_interface], [msg, chat_interface], queue = False). then(chatbot_response, [msg, chat_interface], [chat_interface, chat_interface]) clear.click(lambda: None, None, chat_interface, queue=False) chatbot.launch()