import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM import spaces import requests import copy from PIL import Image, ImageDraw, ImageFont import io import matplotlib.pyplot as plt import matplotlib.patches as patches import random import numpy as np import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) models = { 'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(), 'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(), 'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(), 'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(), } processors = { 'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), 'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True), 'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True), 'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True), } DESCRIPTION = "# [Florence-2 OCR Demo](https://huggingface.co/microsoft/Florence-2-large)" colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] def fig_to_pil(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) return Image.open(buf) @spaces.GPU def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'): model = models[model_id] processor = processors[model_id] if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) return parsed_answer def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'): image = Image.fromarray(image) # Convert NumPy array to PIL Image if task_prompt == 'OCR': task_prompt = '' results = run_example(task_prompt, image, model_id=model_id) return results, None else: return "", None # Return empty string and None for unknown task prompts css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ single_task_list =[ 'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection', 'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding', 'Referring Expression Segmentation', 'Region to Segmentation', 'Open Vocabulary Detection', 'Region to Category', 'Region to Description', 'OCR', 'OCR with Region' ] cascased_task_list =[ 'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding' ] def update_task_dropdown(choice): if choice == 'Cascased task': return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding') else: return gr.Dropdown(choices=single_task_list, value='Caption') with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Florence-2 Image Captioning"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large') task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task') task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption") task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt) text_input = gr.Textbox(label="Text Input (optional)") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") gr.Examples( examples=[ ["image1.jpg", 'Object Detection'], ["image2.jpg", 'OCR with Region'] ], inputs=[input_img, task_prompt], outputs=[output_text], fn=process_image, cache_examples=True, label='Try examples' ) submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text]) demo.launch(debug=True)