import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM import numpy as np import torch transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") # Load a GPT-2 model for general question answering tokenizer = AutoTokenizer.from_pretrained("gpt2-medium", cache_dir="./cache") model = AutoModelForCausalLM.from_pretrained("gpt2-medium", cache_dir="./cache") def transcribe(audio): if audio is None: return "No audio recorded." sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] def answer(question): input_ids = tokenizer.encode(f"Q: {question}\nA:", return_tensors="pt") # Generate a response with torch.no_grad(): output = model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=0.7, top_k=50, top_p=0.95) response = tokenizer.decode(output[0], skip_special_tokens=True) # Extract only the answer part answer = response.split("A:")[-1].strip() print(answer) return response def process_audio(audio): if audio is None: return "No audio recorded.", "" transcription = transcribe(audio) answer_result = answer(transcription) return transcription, answer_result def clear_all(): return None, "", "" with gr.Blocks() as demo: gr.Markdown("# Audio Transcription and Question Answering") audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy") transcription_output = gr.Textbox(label="Transcription") answer_output = gr.Textbox(label="Answer Result", lines=10) clear_button = gr.Button("Clear") audio_input.stop_recording( fn=process_audio, inputs=[audio_input], outputs=[transcription_output, answer_output] ) clear_button.click( fn=clear_all, inputs=[], outputs=[audio_input, transcription_output, answer_output] ) demo.launch()