Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
from openai import OpenAI | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") | |
def predict(message, history, api_key): | |
print('in predict') | |
client = OpenAI(api_key=api_key) | |
history_openai_format = [] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human}) | |
history_openai_format.append({"role": "assistant", "content": assistant}) | |
history_openai_format.append({"role": "user", "content": message}) | |
response = client.chat.completions.create( | |
model='gpt-4o', | |
messages=history_openai_format, | |
temperature=1.0, | |
stream=True | |
) | |
partial_message = "" | |
for chunk in response: | |
if chunk.choices[0].delta.content: | |
print(111, chunk.choices[0].delta.content) | |
partial_message += chunk.choices[0].delta.content | |
yield partial_message | |
def chat_with_api_key(api_key, message, history): | |
print('in chat_with_api_key') | |
accumulated_message = "" | |
for partial_message in predict(message, history, api_key): | |
accumulated_message = partial_message | |
history.append((message, accumulated_message)) | |
# yield accumulated_message, history | |
yield message,[[message, accumulated_message]] | |
def transcribe(audio): | |
if audio is None: | |
return "No audio recorded." | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"] | |
def answer(transcription): | |
context = "You are a chatbot answering general questions" | |
result = qa_model(question=transcription, context=context) | |
return result['answer'] | |
def process_audio(audio): | |
if audio is None: | |
return "No audio recorded.", [] | |
transcription = transcribe(audio) | |
answer_result = answer(transcription) | |
return transcription, [[transcription, answer_result]] | |
def update_output(api_key, audio_input, state): | |
print('in update_output') | |
message = transcribe(audio_input) | |
responses = chat_with_api_key(api_key, message, state) | |
accumulated_response = "" | |
for response, updated_state in responses: | |
accumulated_response = response | |
yield accumulated_response, updated_state | |
def clear_all(): | |
return None, "", [] | |
with gr.Blocks() as demo: | |
answer_output = gr.Chatbot(label="Answer Result") | |
with gr.Row(): | |
audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy") | |
with gr.Column(): | |
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password") | |
transcription_output = gr.Textbox(label="Transcription") | |
clear_button = gr.Button("Clear") | |
state = gr.State([]) | |
if 1: | |
audio_input.stop_recording( | |
fn=update_output, | |
inputs=[api_key, audio_input, state], | |
outputs=[transcription_output, answer_output] | |
) | |
if 0: | |
audio_input.stop_recording( | |
fn=process_audio, | |
inputs=[audio_input], | |
outputs=[transcription_output, answer_output] | |
) | |
clear_button.click( | |
fn=clear_all, | |
inputs=[], | |
outputs=[audio_input, transcription_output, answer_output] | |
) | |
demo.launch() | |