import logging from pathlib import Path import gradio as gr import os from jinja2 import Environment, FileSystemLoader from src.chat import Chat from src.rag import FaissDB, AICompletion, define_query from src.prompts import * chat_model = AICompletion() chat = Chat(system_prompt=SYSTEM_PROMPT) faiss_index = FaissDB(emb_model=os.environ["OPENAI_EMBEDDINGS_MODEL"]) faiss_index.load_index(os.environ["PATH_TO_INDEX"]) proj_dir = Path(__file__).parent logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) template_html = env.get_template('template_html.j2') def add_text(history, text): history = [] if history is None else history history = history + [(text, None)] return history, gr.Textbox(value="", interactive=False) def bot(history): user_query = history[-1][0] if not user_query: raise gr.Warning("Please submit a non-empty string") logger.info('Retrieving documents...') retrieve_query = define_query(user_query, chat_model) documents = faiss_index.similarity_search(retrieve_query) if retrieve_query else '' user_prompt = USER_PROMPT(user_query, '\n'.join(documents)) prompt_html = template_html.render(documents=documents, query=retrieve_query if retrieve_query else 'No query') stream = chat.stream(user_prompt) history[-1][1] = "" for character in stream: history[-1][1] = character yield history, prompt_html with gr.Blocks() as demo: chatbot = gr.Chatbot( [], elem_id="chatbot", avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), bubble_full_width=False, show_copy_button=True, show_share_button=True, ) with gr.Row(): txt = gr.Textbox( scale=3, show_label=False, placeholder="Enter text and press enter", container=False, ) txt_btn = gr.Button(value="Submit text", scale=1) prompt_html = gr.HTML() txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot], [chatbot, prompt_html]) txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot], [chatbot, prompt_html]) txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) demo.queue() demo.launch(debug=True)