# app_pure_llm.py import os import re import gradio as gr import openai from openai import OpenAI from langchain.text_splitter import CharacterTextSplitter from sentence_transformers import SentenceTransformer DARTMOUTH_CHAT_API_KEY = os.getenv('DARTMOUTH_CHAT_API_KEY') if DARTMOUTH_CHAT_API_KEY is None: raise ValueError("DARTMOUTH_CHAT_API_KEY not set.") MODEL = "openai.gpt-4o-2024-08-06" client = OpenAI( base_url="https://chat.dartmouth.edu/api", # Replace with your endpoint URL api_key=DARTMOUTH_CHAT_API_KEY, # Replace with your API key, if required ) # --- Load and Prepare Data --- # (Even if not used by the pure LLM function, we load the file to maintain consistency.) with open("gen_agents.txt", "r", encoding="utf-8") as f: full_text = f.read() text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=512, chunk_overlap=20) docs = text_splitter.create_documents([full_text]) # You might not need passages for the pure LLM output, but we'll load them for completeness. passages = [doc.page_content for doc in docs] # --- Provided Function for Pure LLM --- def generate_plain_answer(query): """ Generate an answer using GPT-4 without additional context. """ messages = [ {"role": "system", "content": "You are a knowledgeable teaching assistant."}, {"role": "user", "content": f"Answer the question: {query}"} ] response = client.chat.completions.create( model=MODEL, messages=messages, ) answer = response.choices[0].message.content.strip() return answer # --- Gradio App Function --- def get_pure_llm_output(query): answer = generate_plain_answer(query) return f"
{answer}
" def clear_output(): return "" # --- Custom CSS --- custom_css = """ body { background-color: #343541 !important; color: #ECECEC !important; margin: 0; padding: 0; font-family: 'Inter', sans-serif; } #container { max-width: 900px; margin: 0 auto; padding: 20px; } label { color: #ECECEC; font-weight: 600; } textarea, input { background-color: #40414F; color: #ECECEC; border: 1px solid #565869; } button { background-color: #565869; color: #ECECEC; border: none; font-weight: 600; transition: background-color 0.2s ease; } button:hover { background-color: #6e7283; } .output-box { border: 1px solid #565869; border-radius: 4px; padding: 10px; margin-top: 8px; background-color: #40414F; } """ # --- Build Gradio Interface --- with gr.Blocks(css=custom_css) as demo: with gr.Column(elem_id="container"): gr.Markdown("## Anonymous Chatbot\n### Loaded Article: Generative Agents - Interactive Simulacra of Human Behavior (Park et al. 2023)\n [https://arxiv.org/pdf/2304.03442](https://arxiv.org/pdf/2304.03442)") gr.Markdown("Enter any questions about the article above in the prompt!") query_input = gr.Textbox(label="Query", placeholder="Enter your query here...", lines=1) with gr.Column(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear") output_box = gr.HTML(label="Output", elem_classes="output-box") submit_button.click(fn=get_pure_llm_output, inputs=query_input, outputs=output_box) clear_button.click(fn=clear_output, inputs=[], outputs=output_box) demo.launch()