import gradio as gr import requests import spaces API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" headers = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"} @spaces.GPU def analyze_sentiment(text): payload = { "inputs": f"Analyze the sentiment of the following text and respond with either 'heureux' or 'malheureux': {text}" } try: response = requests.post(API_URL, headers=headers, json=payload) response.raise_for_status() # Vérifie si la requête a réussi result = response.json() if isinstance(result, list) and len(result) > 0 and 'generated_text' in result[0]: sentiment = result[0]['generated_text'].strip().lower() return "heureux" if "heureux" in sentiment else "malheureux" else: return "Erreur: Format de réponse inattendu" except requests.exceptions.RequestException as e: return f"Erreur de requête: {str(e)}" except Exception as e: return f"Erreur inattendue: {str(e)}" def gradio_interface(input_text): return analyze_sentiment(input_text) iface = gr.Interface( fn=gradio_interface, inputs=gr.Textbox(lines=3, placeholder="Entrez votre texte ici..."), outputs=gr.Label(num_top_classes=1), title="Analyseur de Sentiment", description="Entrez un texte pour déterminer si le sentiment est 'heureux' ou 'malheureux'." ) iface.launch(share=True)