# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import logging import os import pathlib from dataclasses import dataclass, field from typing import Dict, List, Optional, Sequence import torch import transformers from llava import conversation as conversation_lib from llava.constants import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX) from llava.mm_utils import tokenizer_image_token from llava.model import * from llava.train.llava_trainer import LLaVATrainer from PIL import Image from torch.utils.data import Dataset local_rank = None def rank0_print(*args): if local_rank == 0: print(*args) @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="facebook/opt-125m") version: Optional[str] = field(default="v0") freeze_backbone: bool = field(default=False) tune_mm_mlp_adapter: bool = field(default=False) vision_tower: Optional[str] = field(default=None) mm_vision_select_layer: Optional[int] = field( default=-1 ) # default to the last layer pretrain_mm_mlp_adapter: Optional[str] = field(default=None) mm_use_im_start_end: bool = field(default=False) mm_use_im_patch_token: bool = field(default=True) mm_vision_select_feature: Optional[str] = field(default="patch") @dataclass class DataArguments: data_path: str = field( default=None, metadata={"help": "Path to the training data."} ) lazy_preprocess: bool = False is_multimodal: bool = False image_folder: Optional[str] = field(default=None) image_aspect_ratio: str = "square" image_grid_pinpoints: Optional[str] = field(default=None) @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") remove_unused_columns: bool = field(default=False) freeze_mm_mlp_adapter: bool = field(default=False) mpt_attn_impl: Optional[str] = field(default="triton") model_max_length: int = field( default=512, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) double_quant: bool = field( default=True, metadata={ "help": "Compress the quantization statistics through double quantization." }, ) quant_type: str = field( default="nf4", metadata={ "help": "Quantization data type to use. Should be one of `fp4` or `nf4`." }, ) bits: int = field(default=16, metadata={"help": "How many bits to use."}) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: logging.warning( f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}" ) with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias.items(): if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = { k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items() } return to_return def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = { k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match) } to_return = { k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items() } return to_return def find_all_linear_names(model): cls = torch.nn.Linear lora_module_names = set() for name, module in model.named_modules(): if isinstance(module, cls): names = name.split(".") lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if "lm_head" in lora_module_names: # needed for 16-bit lora_module_names.remove("lm_head") return list(lora_module_names) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" if getattr(trainer.args, "tune_mm_mlp_adapter", False): # Only save Adapter keys_to_match = ["mm_projector"] if getattr(trainer.args, "use_im_start_end", False): keys_to_match.extend(["embed_tokens", "embed_in"]) weight_to_save = get_mm_adapter_state_maybe_zero_3( trainer.model.named_parameters(), keys_to_match ) trainer.model.config.save_pretrained(output_dir) current_folder = output_dir.split("/")[-1] parent_folder = os.path.dirname(output_dir) if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: if current_folder.startswith("checkpoint-"): mm_projector_folder = os.path.join(parent_folder, "mm_projector") os.makedirs(mm_projector_folder, exist_ok=True) torch.save( weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin"), ) else: torch.save( weight_to_save, os.path.join(output_dir, f"mm_projector.bin") ) return if trainer.deepspeed: torch.cuda.synchronize() trainer.save_model(output_dir) return state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True ) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True ) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn( strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer ) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def _mask_targets(target, tokenized_lens, speakers): # cur_idx = 0 cur_idx = tokenized_lens[0] tokenized_lens = tokenized_lens[1:] target[:cur_idx] = IGNORE_INDEX for tokenized_len, speaker in zip(tokenized_lens, speakers): if speaker == "human": target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX cur_idx += tokenized_len def _add_speaker_and_signal(header, source, get_conversation=True): """Add speaker and start/end signal on each round.""" BEGIN_SIGNAL = "### " END_SIGNAL = "\n" conversation = header for sentence in source: from_str = sentence["from"] if from_str.lower() == "human": from_str = conversation_lib.default_conversation.roles[0] elif from_str.lower() == "gpt": from_str = conversation_lib.default_conversation.roles[1] else: from_str = "unknown" sentence["value"] = ( BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL ) if get_conversation: conversation += sentence["value"] conversation += BEGIN_SIGNAL return conversation def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict: is_multimodal = data_args.is_multimodal if not is_multimodal: return sources for source in sources: for sentence in source: if DEFAULT_IMAGE_TOKEN in sentence["value"]: sentence["value"] = ( sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() ) sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] sentence["value"] = sentence["value"].strip() if "mmtag" in conversation_lib.default_conversation.version: sentence["value"] = sentence["value"].replace( DEFAULT_IMAGE_TOKEN, "" + DEFAULT_IMAGE_TOKEN + "", ) replace_token = DEFAULT_IMAGE_TOKEN if data_args.mm_use_im_start_end: replace_token = ( DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN ) sentence["value"] = sentence["value"].replace( DEFAULT_IMAGE_TOKEN, replace_token ) return sources def preprocess_llama_2( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack( [ tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations ], dim=0, ) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 # Mask targets sep = "[/INST] " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_v1( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack( [ tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations ], dim=0, ) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.TWO # Mask targets sep = conv.sep + conv.roles[1] + ": " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_mpt( sources, tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations input_ids = torch.stack( [ tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations ], dim=0, ) targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.MPT # Mask targets sep = conv.sep + conv.roles[1] for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep) re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt for conv_idx in range(3, len(rounds), 2): re_rounds.append( conv.sep.join(rounds[conv_idx : conv_idx + 2]) ) # user + gpt cur_len = 0 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(re_rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep round_len = len(tokenizer_image_token(rou, tokenizer)) + len( tokenizer_image_token(conv.sep, tokenizer) ) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_plain( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: # add end signal and concatenate together conversations = [] for source in sources: assert len(source) == 2 assert DEFAULT_IMAGE_TOKEN in source[0]["value"] source[0]["value"] = DEFAULT_IMAGE_TOKEN conversation = ( source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep ) conversations.append(conversation) # tokenize conversations input_ids = [ tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations ] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer)) target[:tokenized_len] = IGNORE_INDEX return dict(input_ids=input_ids, labels=targets) def preprocess( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, ) -> Dict: """ Given a list of sources, each is a conversation list. This transform: 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; 2. Concatenate conversations together; 3. Tokenize the concatenated conversation; 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. """ if ( conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN ): return preprocess_plain(sources, tokenizer) if ( conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 ): return preprocess_llama_2(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version.startswith("v1"): return preprocess_v1(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "mpt": return preprocess_mpt(sources, tokenizer) # add end signal and concatenate together conversations = [] for source in sources: header = f"{conversation_lib.default_conversation.system}\n\n" conversation = _add_speaker_and_signal(header, source) conversations.append(conversation) # tokenize conversations def get_tokenize_len(prompts): return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] if has_image: input_ids = [ tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations ] else: conversations_tokenized = _tokenize_fn(conversations, tokenizer) input_ids = conversations_tokenized["input_ids"] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): if has_image: tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) else: tokenized_lens = _tokenize_fn( [header] + [s["value"] for s in source], tokenizer )["input_ids_lens"] speakers = [sentence["from"] for sentence in source] _mask_targets(target, tokenized_lens, speakers) return dict(input_ids=input_ids, labels=targets) class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__( self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, ): super(LazySupervisedDataset, self).__init__() list_data_dict = json.load(open(data_path, "r")) rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.list_data_dict = list_data_dict self.data_args = data_args def __len__(self): return len(self.list_data_dict) def __getitem__(self, i) -> Dict[str, torch.Tensor]: sources = self.list_data_dict[i] if isinstance(i, int): sources = [sources] assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME if "image" in sources[0]: image_file = self.list_data_dict[i]["image"] image_folder = self.data_args.image_folder processor = self.data_args.image_processor image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") if self.data_args.image_aspect_ratio == "pad": def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new( pil_img.mode, (width, width), background_color ) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new( pil_img.mode, (height, height), background_color ) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square( image, tuple(int(x * 255) for x in processor.image_mean) ) image = processor.preprocess(image, return_tensors="pt")[ "pixel_values" ][0] else: image = processor.preprocess(image, return_tensors="pt")[ "pixel_values" ][0] sources = preprocess_multimodal( copy.deepcopy([e["conversations"] for e in sources]), self.data_args ) else: sources = copy.deepcopy([e["conversations"] for e in sources]) data_dict = preprocess( sources, self.tokenizer, has_image=("image" in self.list_data_dict[i]) ) if isinstance(i, int): data_dict = dict( input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0] ) # image exist in the data if "image" in self.list_data_dict[i]: data_dict["image"] = image elif self.data_args.is_multimodal: # image does not exist in the data, but the model is multimodal crop_size = self.data_args.image_processor.crop_size data_dict["image"] = torch.zeros(3, crop_size["height"], crop_size["width"]) return data_dict @dataclass class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple( [instance[key] for instance in instances] for key in ("input_ids", "labels") ) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id ) labels = torch.nn.utils.rnn.pad_sequence( labels, batch_first=True, padding_value=IGNORE_INDEX ) input_ids = input_ids[:, : self.tokenizer.model_max_length] labels = labels[:, : self.tokenizer.model_max_length] batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) if "image" in instances[0]: images = [instance["image"] for instance in instances] if all(x is not None and x.shape == images[0].shape for x in images): batch["images"] = torch.stack(images) else: batch["images"] = images return batch def make_supervised_data_module( tokenizer: transformers.PreTrainedTokenizer, data_args ) -> Dict: """Make dataset and collator for supervised fine-tuning.""" train_dataset = LazySupervisedDataset( tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args ) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) return dict( train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator ) def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments) ) model_args, data_args, training_args = parser.parse_args_into_dataclasses() local_rank = training_args.local_rank compute_dtype = ( torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) ) bnb_model_from_pretrained_args = {} if training_args.bits in [4, 8]: from transformers import BitsAndBytesConfig bnb_model_from_pretrained_args.update( dict( device_map={"": training_args.device}, load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, quantization_config=BitsAndBytesConfig( load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=training_args.double_quant, bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'} ), ) ) if model_args.vision_tower is not None: if "mpt" in model_args.model_name_or_path: config = transformers.AutoConfig.from_pretrained( model_args.model_name_or_path, trust_remote_code=True ) config.attn_config["attn_impl"] = training_args.mpt_attn_impl model = LlavaMPTForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=training_args.cache_dir, **bnb_model_from_pretrained_args, ) else: model = LlavaLlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, **bnb_model_from_pretrained_args, ) else: model = transformers.LlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, **bnb_model_from_pretrained_args, ) model.config.use_cache = False if model_args.freeze_backbone: model.model.requires_grad_(False) if training_args.bits in [4, 8]: from peft import prepare_model_for_kbit_training model.config.torch_dtype = ( torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) ) model = prepare_model_for_kbit_training( model, use_gradient_checkpointing=training_args.gradient_checkpointing ) if training_args.gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) if training_args.lora_enable: from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=training_args.lora_r, lora_alpha=training_args.lora_alpha, target_modules=find_all_linear_names(model), lora_dropout=training_args.lora_dropout, bias=training_args.lora_bias, task_type="CAUSAL_LM", ) if training_args.bits == 16: if training_args.bf16: model.to(torch.bfloat16) if training_args.fp16: model.to(torch.float16) rank0_print("Adding LoRA adapters...") model = get_peft_model(model, lora_config) if "mpt" in model_args.model_name_or_path: tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", ) else: tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, ) if model_args.version == "v0": if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token="[PAD]"), tokenizer=tokenizer, model=model, ) elif model_args.version == "v0.5": tokenizer.pad_token = tokenizer.unk_token else: tokenizer.pad_token = tokenizer.unk_token if model_args.version in conversation_lib.conv_templates: conversation_lib.default_conversation = conversation_lib.conv_templates[ model_args.version ] else: conversation_lib.default_conversation = conversation_lib.conv_templates[ "vicuna_v1" ] if model_args.vision_tower is not None: model.get_model().initialize_vision_modules( model_args=model_args, fsdp=training_args.fsdp ) vision_tower = model.get_vision_tower() vision_tower.to(dtype=torch.float16, device=training_args.device) data_args.image_processor = vision_tower.image_processor data_args.is_multimodal = True model.config.image_aspect_ratio = data_args.image_aspect_ratio model.config.image_grid_pinpoints = data_args.image_grid_pinpoints model.config.tune_mm_mlp_adapter = ( training_args.tune_mm_mlp_adapter ) = model_args.tune_mm_mlp_adapter if model_args.tune_mm_mlp_adapter: model.requires_grad_(False) for p in model.get_model().mm_projector.parameters(): p.requires_grad = True model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter if training_args.freeze_mm_mlp_adapter: for p in model.get_model().mm_projector.parameters(): p.requires_grad = False if training_args.bits in [4, 8]: model.get_model().mm_projector.to( dtype=compute_dtype, device=training_args.device ) model.config.mm_use_im_start_end = ( data_args.mm_use_im_start_end ) = model_args.mm_use_im_start_end training_args.use_im_start_end = model_args.mm_use_im_start_end model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) if training_args.bits in [4, 8]: from peft.tuners.lora import LoraLayer for name, module in model.named_modules(): if isinstance(module, LoraLayer): if training_args.bf16: module = module.to(torch.bfloat16) if "norm" in name: module = module.to(torch.float32) if "lm_head" in name or "embed_tokens" in name: if hasattr(module, "weight"): if training_args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) trainer = LLaVATrainer( model=model, tokenizer=tokenizer, args=training_args, **data_module ) if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): trainer.train(resume_from_checkpoint=True) else: trainer.train() trainer.save_state() model.config.use_cache = True if training_args.lora_enable: state_dict = get_peft_state_maybe_zero_3( model.named_parameters(), training_args.lora_bias ) non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( model.named_parameters() ) if training_args.local_rank == 0 or training_args.local_rank == -1: model.config.save_pretrained(training_args.output_dir) model.save_pretrained(training_args.output_dir, state_dict=state_dict) torch.save( non_lora_state_dict, os.path.join(training_args.output_dir, "non_lora_trainables.bin"), ) else: safe_save_model_for_hf_trainer( trainer=trainer, output_dir=training_args.output_dir ) if __name__ == "__main__": train()