import os from typing import Optional import torch from transformers import Trainer def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: print(name, "no ignore status") with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = { k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match) } to_return = { k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items() } return to_return class LLaVATrainer(Trainer): def _save_checkpoint(self, model, trial, metrics=None): if getattr(self.args, "tune_mm_mlp_adapter", False): from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" run_dir = self._get_output_dir(trial=trial) output_dir = os.path.join(run_dir, checkpoint_folder) # Only save Adapter keys_to_match = ["mm_projector"] if getattr(self.args, "use_im_start_end", False): keys_to_match.extend(["embed_tokens", "embed_in"]) weight_to_save = get_mm_adapter_state_maybe_zero_3( self.model.named_parameters(), keys_to_match ) if self.args.local_rank == 0 or self.args.local_rank == -1: self.model.config.save_pretrained(output_dir) torch.save( weight_to_save, os.path.join(output_dir, f"mm_projector.bin") ) else: super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics) def _save(self, output_dir: Optional[str] = None, state_dict=None): if getattr(self.args, "tune_mm_mlp_adapter", False): pass else: super(LLaVATrainer, self)._save(output_dir, state_dict)