""" Usage: python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta """ import argparse import torch from .utils import auto_upgrade from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id): print("Loading base model") base = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True ) print("Loading target model") auto_upgrade(target_model_path) target = AutoModelForCausalLM.from_pretrained( target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True ) print("Calculating delta") for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"): if name not in base.state_dict(): assert name in [ "model.mm_projector.weight", "model.mm_projector.bias", ], f"{name} not in base model" continue if param.data.shape == base.state_dict()[name].shape: param.data -= base.state_dict()[name] else: assert name in [ "model.embed_tokens.weight", "lm_head.weight", ], f"{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}" bparam = base.state_dict()[name] param.data[: bparam.shape[0], : bparam.shape[1]] -= bparam print("Saving delta") if hub_repo_id: kwargs = {"push_to_hub": True, "repo_id": hub_repo_id} else: kwargs = {} target.save_pretrained(delta_path, **kwargs) target_tokenizer = AutoTokenizer.from_pretrained(target_model_path) target_tokenizer.save_pretrained(delta_path, **kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--base-model-path", type=str, required=True) parser.add_argument("--target-model-path", type=str, required=True) parser.add_argument("--delta-path", type=str, required=True) parser.add_argument("--hub-repo-id", type=str, default=None) args = parser.parse_args() make_delta( args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id )