"""functions using machine learning instance model(s)""" from samgis_lisa_on_cuda import app_logger, MODEL_FOLDER from samgis_lisa_on_cuda.io.geo_helpers import get_vectorized_raster_as_geojson from samgis_lisa_on_cuda.io.raster_helpers import get_raster_terrain_rgb_like, get_rgb_prediction_image from samgis_lisa_on_cuda.io.tms2geotiff import download_extent from samgis_lisa_on_cuda.io.wrappers_helpers import check_source_type_is_terrain from samgis_lisa_on_cuda.prediction_api.global_models import models_dict, embedding_dict from samgis_lisa_on_cuda.utilities.constants import DEFAULT_URL_TILES, SLOPE_CELLSIZE from samgis_core.prediction_api.sam_onnx import SegmentAnythingONNX, get_raster_inference_with_embedding_from_dict from samgis_core.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_INPUT_SHAPE from samgis_core.utilities.type_hints import LlistFloat, DictStrInt, ListDict def samexporter_predict( bbox: LlistFloat, prompt: ListDict, zoom: float, model_name_key: str = "fastsam", source: str = DEFAULT_URL_TILES, source_name: str = None ) -> DictStrInt: """ Return predictions as a geojson from a geo-referenced image using the given input prompt. 1. if necessary instantiate a segment anything machine learning instance model 2. download a geo-referenced raster image delimited by the coordinates bounding box (bbox) 3. get a prediction image from the segment anything instance model using the input prompt 4. get a geo-referenced geojson from the prediction image Args: bbox: coordinates bounding box prompt: machine learning input prompt zoom: Level of detail model_name_key: machine learning model name source: xyz source_name: name of tile provider Returns: Affine transform """ if models_dict[model_name_key]["instance"] is None: app_logger.info(f"missing instance model {model_name_key}, instantiating it now!") model_instance = SegmentAnythingONNX( encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME, decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME ) models_dict[model_name_key]["instance"] = model_instance app_logger.debug(f"using a {model_name_key} instance model...") models_instance = models_dict[model_name_key]["instance"] pt0, pt1 = bbox app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.") img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source) if check_source_type_is_terrain(source): app_logger.info("terrain-rgb like raster: transforms it into a DEM") dem = get_raster_terrain_rgb_like(img, source.name) # set a slope cell size proportional to the image width slope_cellsize = int(img.shape[1] * SLOPE_CELLSIZE / DEFAULT_INPUT_SHAPE[1]) app_logger.info(f"terrain-rgb like raster: compute slope, curvature using {slope_cellsize} as cell size.") img = get_rgb_prediction_image(dem, slope_cellsize) app_logger.info( f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.") app_logger.info(f"source_name:{source_name}, source_name type:{type(source_name)}.") embedding_key = f"{source_name}_z{zoom}_w{pt1[1]},s{pt1[0]},e{pt0[1]},n{pt0[0]}" mask, n_predictions = get_raster_inference_with_embedding_from_dict( img, prompt, models_instance, model_name_key, embedding_key, embedding_dict) app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...") return { "n_predictions": n_predictions, **get_vectorized_raster_as_geojson(mask, transform) }